Title:
|
On a phase-field model with a logarithmic nonlinearity (English) |
Author:
|
Miranville, Alain |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
215-229 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term. (English) |
Keyword:
|
phase field system |
Keyword:
|
Maxwell-Cattaneo law |
Keyword:
|
well-posedness |
Keyword:
|
logarithmic potential |
MSC:
|
35A01 |
MSC:
|
35J60 |
MSC:
|
35K55 |
MSC:
|
35K91 |
MSC:
|
35L10 |
MSC:
|
35M33 |
MSC:
|
80A22 |
idZBL:
|
Zbl 1265.35139 |
idMR:
|
MR2984601 |
DOI:
|
10.1007/s10492-012-0014-y |
. |
Date available:
|
2012-06-08T09:58:54Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142851 |
. |
Reference:
|
[1] Aizicovici, S., Feireisl, E., Issard-Roch, F.: Long-time convergence of solutions to a phase-field system.Math. Methods Appl. Sci. 24 (2001), 277-287. Zbl 0984.35026, MR 1818896, 10.1002/mma.215 |
Reference:
|
[2] Brochet, D., Hilhorst, D., Chen, X.: Finite dimensional exponential attractors for the phase-field model.Appl. Anal. 49 (1993), 197-212. MR 1289743, 10.1080/00036819108840173 |
Reference:
|
[3] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Springer New York (1996). Zbl 0951.74002, MR 1411908 |
Reference:
|
[4] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 (1986), 205-245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827 |
Reference:
|
[5] Cahn, J. W., Hilliard, J. E.: Free energy of a nonuniform system. I. Interfacial free energy.J. Chem. Phys. 2 (1958), 258-267. 10.1063/1.1744102 |
Reference:
|
[6] Cherfils, L., Gatti, S., Miranville, A.: Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials.J. Math. Anal. Appl. 343 (2008), 557-566 Corrigendum, J. Math. Anal. Appl. 348 (2008), 1029-1030. Zbl 1160.35433, MR 2412150, 10.1016/j.jmaa.2008.01.077 |
Reference:
|
[7] Cherfils, L., Miranville, A.: Some results on the asymptotic behavior of the Caginalp system with singular potentials.Adv. Math. Sci. Appl. 17 (2007), 107-129. Zbl 1145.35042, MR 2337372 |
Reference:
|
[8] Cherfils, L., Miranville, A.: On the Caginalp system with dynamic boundary conditions and singular potentials.Appl. Math. 54 (2009), 89-115. Zbl 1212.35012, MR 2491850, 10.1007/s10492-009-0008-6 |
Reference:
|
[9] Chill, R., Fašangovà, E., Prüss, J.: Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equation with dynamic boundary conditions.Math. Nachr. 279 (2006), 1448-1462. MR 2269249, 10.1002/mana.200410431 |
Reference:
|
[10] Christov, C. I., Jordan, P. M.: Heat conduction paradox involving second-sound propagation in moving media.Phys. Rev. Lett. 94 (2005), 154301. 10.1103/PhysRevLett.94.154301 |
Reference:
|
[11] Elliott, C. M., Zheng, S.: Global existence and stability of solutions to the phase field equations. In: Free boundary value problems (Proc. Conf. Oberwolfach, 1989).Int. Ser. Numer. Math. 95 (1990), 46-58. MR 1111021 |
Reference:
|
[12] Gajewski, H., Zacharias, K.: Global behaviour of a reaction-diffusion system modelling chemotaxis.Math. Nachr. 195 (1998), 77-114. Zbl 0918.35064, MR 1654677, 10.1002/mana.19981950106 |
Reference:
|
[13] Gal, C. G., Grasselli, M.: The non-isothermal Allen-Cahn equation with dynamic boundary conditions.Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. Zbl 1160.35353, MR 2434980, 10.3934/dcds.2008.22.1009 |
Reference:
|
[14] Gatti, S., Miranville, A.: Asymptotic behavior of a phase-field system with dynamic boundary conditions.In: Differential Equations. Inverse and Direct Problems. Proc. Workshop ``Evolution Equations: Inverse and Direct Problems'', Cortona, June 21-25, 2004. A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini, A. Lorenzi CRC Press Boca Raton (2006), 149-170. Zbl 1123.35310, MR 2275977, 10.1201/9781420011135.ch9 |
Reference:
|
[15] Grasselli, M., Miranville, A., Pata, V., Zelik, S.: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials.Math. Nachr. 280 (2007), 1475-1509. Zbl 1133.35017, MR 2354975, 10.1002/mana.200510560 |
Reference:
|
[16] Grasselli, M., Miranville, A., Schimperna, G.: The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials.Discr. Contin. Dyn. Syst. 28 (2010), 67-98. Zbl 1194.35074, MR 2629473, 10.3934/dcds.2010.28.67 |
Reference:
|
[17] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential.Z. Anal. Anwend. 25 (2006), 51-72. Zbl 1128.35021, MR 2216881, 10.4171/ZAA/1277 |
Reference:
|
[18] Grasselli, M., Pata, V.: Existence of a universal attractor for a fully hyperbolic phase-field system.J. Evol. Equ. 4 (2004), 27-51. Zbl 1063.35038, MR 2047305, 10.1007/s00028-003-0074-2 |
Reference:
|
[19] Green, A. E., Naghdi, P. M.: A re-examination of the basic postulates of thermomechanics.Proc. R. Soc. Lond. A 432 (1991), 171-194. Zbl 0726.73004, MR 1116956, 10.1098/rspa.1991.0012 |
Reference:
|
[20] Jiang, J.: Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law.J. Math. Anal. Appl. 341 (2008), 149-169. Zbl 1139.35019, MR 2394072, 10.1016/j.jmaa.2007.09.041 |
Reference:
|
[21] Jiang, J.: Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law.Math. Methods Appl. Sci. 32 (2009), 1156-1182. Zbl 1180.35107, MR 2523568, 10.1002/mma.1092 |
Reference:
|
[22] Kufner, A., John, O., Fučík, S.: Function Spaces.Noordhoff International Publishing/Academia Leyden/Prague (1977). MR 0482102 |
Reference:
|
[23] Miranville, A., Quintanilla, R.: A generalization of the Caginalp phase-field system based on the Cattaneo law.Nonlinear Anal., Theorey Methods Appl. 71 (2009), 2278-2290. Zbl 1167.35304, MR 2524435, 10.1016/j.na.2009.01.061 |
Reference:
|
[24] Miranville, A., Quintanilla, R.: Some generalizations of the Caginalp phase-field system.Appl. Anal. 88 (2009), 877-894. Zbl 1178.35194, MR 2548940, 10.1080/00036810903042182 |
Reference:
|
[25] Miranville, A., Quintanilla, R.: A phase-field model based on a three-phase-lag heat conduction.Appl. Math. Optim. 63 (2011), 133-150. Zbl 1213.35111, MR 2746733, 10.1007/s00245-010-9114-9 |
Reference:
|
[26] Miranville, A., Quintanilla, R.: A type III phase-field system with a logarithmic potential.Appl. Math. Lett. 24 (2011), 1003-1008. Zbl 1213.35187, MR 2776176, 10.1016/j.aml.2011.01.016 |
Reference:
|
[27] Miranville, A., Zelik, S.: Robust exponential attractors for singularly perturbed phase-field type equations.Electron. J. Differ. Equ. (2002), 1-28 Paper No. 63, electronic only. Zbl 1004.35024, MR 1911930 |
Reference:
|
[28] Miranville, A., Zelik, S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials.Math. Methods Appl. Sci. 27 (2004), 545-582. Zbl 1050.35113, MR 2041814, 10.1002/mma.464 |
Reference:
|
[29] Miranville, A., Zelik, S.: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions.Discr. Contin. Dyn. Syst. 28 (2010), 275-310. Zbl 1203.35046, MR 2629483, 10.3934/dcds.2010.28.275 |
Reference:
|
[30] Choudhuri, S. K. Roy: A thermoelastic three-phase-lag model.J. Thermal Stresses 30 (2007), 231-238. 10.1080/01495730601130919 |
Reference:
|
[31] Zhang, Z.: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions.Commun. Pure Appl. Anal. 4 (2005), 683-693. Zbl 1082.35033, MR 2167193, 10.3934/cpaa.2005.4.683 |
. |