Previous |  Up |  Next

Article

Title: Theoretical analysis of discrete contact problems with Coulomb friction (English)
Author: Ligurský, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 3
Year: 2012
Pages: 263-295
Summary lang: English
.
Category: math
.
Summary: A discrete model of the two-dimensional Signorini problem with Coulomb friction and a coefficient of friction $\mathcal {F}$ depending on the spatial variable is analysed. It is shown that a solution exists for any $\mathcal {F}$ and is globally unique if $\mathcal {F}$ is sufficiently small. The Lipschitz continuity of this unique solution as a function of $\mathcal {F}$ as well as a function of the load vector $\boldsymbol {f}$ is obtained. Furthermore, local uniqueness of solutions for arbitrary $\mathcal {F} > 0$ is studied. The question of existence of locally Lipschitz-continuous branches of solutions with respect to the coefficient $\mathcal {F}$ is converted to the question of existence of locally Lipschitz-continuous branches of solutions with respect to the load vector $\boldsymbol {f}$. A condition guaranteeing the existence of locally Lipschitz-continuous branches of solutions in the latter case and results for determining their directional derivatives are given. Finally, the general approach is illustrated on an elementary example, whose solutions are calculated exactly. (English)
Keyword: unilateral contact
Keyword: Coulomb friction
Keyword: local uniqueness
Keyword: qualitative behaviour
MSC: 74G20
MSC: 74G55
MSC: 74M10
MSC: 74M15
MSC: 74S05
idZBL: Zbl 1265.74069
idMR: MR2984603
DOI: 10.1007/s10492-012-0016-9
.
Date available: 2012-06-08T10:01:40Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142853
.
Reference: [1] Beremlijski, P., Haslinger, J., Kočvara, M., Kučera, R., Outrata, J. V.: Shape optimization in three-dimensional contact problems with Coulomb friction.SIAM J. Optim. 20 (2009), 416-444. Zbl 1186.49028, MR 2507130, 10.1137/080714427
Reference: [2] Beremlijski, P., Haslinger, J., Kočvara, M., Outrata, J. V.: Shape optimization in contact problems with Coulomb friction.SIAM J. Optim. 13 (2002), 561-587. Zbl 1025.49026, MR 1951035, 10.1137/S1052623401395061
Reference: [3] Dontchev, A. L., Hager, W. W.: Implicit functions, Lipschitz maps, and stability in optimization.Math. Oper. Res. 19 (1994), 753-768. Zbl 0835.49019, MR 1288898, 10.1287/moor.19.3.753
Reference: [4] Eck, C., Jarušek, J.: Existence results for the static contact problem with Coulomb friction.Math. Models Methods Appl. Sci. 8 (1998), 445-468. Zbl 0907.73052, MR 1624879, 10.1142/S0218202598000196
Reference: [5] Ekeland, I., Temam, R.: Analyse convexe et problèmes variationnels. Études mathématiques.Dunod/Gauthier-Villars Paris/Bruxelles-Montréal (1974), French. MR 0463993
Reference: [6] Glowinski, R.: Numerical methods for nonlinear variational problems. Springer Series in Computational Physics.Springer New York (1984). MR 0737005
Reference: [7] Haslinger, J.: Approximation of the Signorini problem with friction, obeying the Coulomb law.Math. Methods Appl. Sci. 5 (1983), 422-437. Zbl 0525.73130, MR 0716664, 10.1002/mma.1670050127
Reference: [8] Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics.Handbook of Numerical Analysis, Vol. IV P. G. Ciarlet et al. North-Holland Amsterdam (1996), 313-485. MR 1422506, 10.1016/S1570-8659(96)80005-6
Reference: [9] Hild, P.: An example of nonuniqueness for the continuous static unilateral contact model with Coulomb friction.C. R. Math., Acad. Sci. Paris 337 (2003), 685-688. Zbl 1035.35090, MR 2030112, 10.1016/j.crma.2003.10.010
Reference: [10] Hild, P.: Non-unique slipping in the Coulomb friction model in two-dimensional linear elasticity.Q. J. Mech. Appl. Math. 57 (2004), 225-235. Zbl 1059.74042, MR 2068404, 10.1093/qjmam/57.2.225
Reference: [11] Hild, P., Renard, Y.: Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics.Quart. Appl. Math. 63 (2005), 553-573 \MR 2169034. MR 2169034, 10.1090/S0033-569X-05-00974-0
Reference: [12] Janovský, V.: Catastrophic features of Coulomb friction model.The mathematics of finite elements and applications IV, MAFELAP 1981, Proc. Conf., Uxbridge/Middlesex 1981 (1982), 259-264. Zbl 0504.73077
Reference: [13] Nečas, J., Jarušek, J., Haslinger, J.: On the solution of the variational inequality to the Signorini problem with small friction.Boll. Unione Mat. Ital., V. Ser., B 17 (1980), 796-811. MR 0580559
Reference: [14] Renard, Y.: A uniqueness criterion for the Signorini problem with Coulomb friction.SIAM J. Math. Anal. 38 (2006), 452-467. Zbl 1194.74225, MR 2237156, 10.1137/050635936
Reference: [15] Robinson, S. M.: Strongly regular generalized equations.Math. Oper. Res. 5 (1980), 43-62. Zbl 0437.90094, MR 0561153, 10.1287/moor.5.1.43
Reference: [16] Scholtes, S.: Introduction to piecewise differentiable equations. Preprint No. 53/1994.Institut für Statistik und Mathematische Wirtschaftstheorie Universität Karlsruhe (1994).
.

Files

Files Size Format View
AplMat_57-2012-3_5.pdf 446.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo