Previous |  Up |  Next

Article

Title: Global classical solutions to a kind of mixed initial-boundary value problem for inhomogeneous quasilinear hyperbolic systems (English)
Author: Yang, Yong-Fu
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 3
Year: 2012
Pages: 231-261
Summary lang: English
.
Category: math
.
Summary: In this paper, the mixed initial-boundary value problem for inhomogeneous quasilinear strictly hyperbolic systems with nonlinear boundary conditions in the first quadrant $\{(t,x)\colon t \geq 0, x \geq 0\}$ is investigated. Under the assumption that the right-hand side satisfies a matching condition and the system is strictly hyperbolic and weakly linearly degenerate, we obtain the global existence and uniqueness of a $C^1$ solution and its $L^1$ stability with certain small initial and boundary data. (English)
Keyword: quasilinear hyperbolic system
Keyword: mixed initial-boundary value problem
Keyword: global classical solution
Keyword: weak linear degeneracy
Keyword: matching conditon
MSC: 35A01
MSC: 35A02
MSC: 35A09
MSC: 35B35
MSC: 35L50
MSC: 35L60
idZBL: Zbl 1265.35207
idMR: MR2984602
DOI: 10.1007/s10492-012-0015-x
.
Date available: 2012-06-08T10:00:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/142852
.
Reference: [1] Bressan, A.: Contractive metrics for nonlinear hyperbolic systems.Indiana Univ. Math. J. 37 (1988), 409-420. Zbl 0632.35041, MR 0963510, 10.1512/iumj.1988.37.37021
Reference: [2] Bressan, A., Liu, T.-P., Yang, T.: $L^1$ stability estimates for $n\times n$ conservation laws.Arch. Ration. Mech. Anal. 149 (1999), 1-22. MR 1723032, 10.1007/s002050050165
Reference: [3] Chen, Y. L.: Global classical solution of the mixed initial-boundary value problem for a kind of the first order quasilinear hyperbolic system.J. Fudan Univ. Nat. Sci. 45 (2006), 625-631. MR 2273247
Reference: [4] Greenberg, J. M., Li, T.-T.: The effect of boundary damping for the quasilinear wave equation.J. Differ. Equations 52 (1984), 66-75. Zbl 0576.35080, MR 0737964, 10.1016/0022-0396(84)90135-9
Reference: [5] Hörmander, L.: The lifespan of classical solutions of nonlinear hyperbolic equations.Lecture Notes Math. 1256 Springer Berlin (1987), 214-280. Zbl 0632.35045, MR 0897781
Reference: [6] John, F.: Formation of singularities in one-dimensional nonlinear wave propagation.Commun. Pure Appl. Math. 27 (1974), 377-405. Zbl 0302.35064, MR 0369934, 10.1002/cpa.3160270307
Reference: [7] Kong, D. X.: Cauchy problem for first order quasilinear hyperbolic systems.J. Fudan Univ. Nat. Sci. 33 (1994), 705-708. Zbl 0938.35573, MR 1341024
Reference: [8] Li, S. M.: Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems.J. Partial Differ. Equations 15 (2002), 46-68. Zbl 1002.35081, MR 1892623
Reference: [9] Li, T.-T.: Global Classical Solutions for Quasilinear Hperbolic Systems.Masson/John Wiley Paris/Chichester (1994). MR 1291392
Reference: [10] Li, T.-T., Peng, Y.-J.: The mixed initial-boundary value problem for reducible quasilinear hyperbolic systems with linearly-degenerate characteristics.Nonlinear Anal., Theory Methods Appl. 52 (2003), 573-583. Zbl 1027.35065, MR 1937641, 10.1016/S0362-546X(02)00123-2
Reference: [11] Li, T.-T., Peng, Y.-J.: Global $C^1$ solution to the initial-boundary value problem for diagonal hyperbolic systems with linearly degenerate characteristics.J. Partial Differ. Equations 16 (2003), 8-17. Zbl 1045.35043, MR 1995402
Reference: [12] Li, T.-T., Wang, L. B.: Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems.Discrete Contin. Dyn. Syst. 12 (2005), 59-78. Zbl 1067.35044, MR 2121249, 10.3934/dcds.2005.12.59
Reference: [13] Li, T.-T., Yu, W.-C.: Boundary Value Problems for Quasilinear Hyperbolic Systems, Series V.Duke University, Mathematical Department Durham (1985).
Reference: [14] Li, T.-T., Zhou, Y., Kong, D.-X.: Weak linear degeneracy and global classical solutions for general quasilinear hyperbolic systems.Commun. Partial Differ. Equations 19 (1994), 1263-1317. Zbl 0810.35054, MR 1284811, 10.1080/03605309408821055
Reference: [15] Li, T.-T., Zhou, Y., Kong, D.-X.: Global classical solutions for general quasilinear hyperbolic systems with decay initial data.Nonlinear Anal., Theory Methods Appl. 28 (1997), 1299-1232. Zbl 0874.35068, MR 1428653
Reference: [16] Liu, T.-P.: Development of singularities in the nonlinear waves for quasi-linear hyperbolic patial differential equations.J. Differ. Equations 33 (1979), 92-111. MR 0540819, 10.1016/0022-0396(79)90082-2
Reference: [17] Liu, T.-P., Yang, T.: Well-posedness theory for hyperbolic conservation laws.Commun. Pure Appl. Math. 52 (1999), 1553-1586. Zbl 1034.35073, MR 1711037, 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S
Reference: [18] Qin, T. H.: Global smooth solutions of dissipative boundary value problems for first order quasilinear hyperbolic systems.Chin. Ann. Math., Ser. B 6 (1985), 289-298. Zbl 0584.35068, MR 0842971
Reference: [19] Wu, P.-X.: Global classical solutions to the Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems.Chin. Ann. Math., Ser. A 27 (2006), 93-108 Chinese. Zbl 1097.35099, MR 2208263
Reference: [20] Zhou, Y.: Global classical solutions to quasilinear hyperbolic systems with weak linear degeneracy.Chin. Ann. Math., Ser. B 25 (2004), 37-56. Zbl 1059.35078, MR 2033949, 10.1142/S0252959904000044
Reference: [21] Zhou, Y., Yang, Y.-F.: Global classical solutions of mixed initial-boundary value problem for quasilinear hyperbolic systems.Nonlinear Anal., Theory Methods Appl. 73 (2010), 1543-1561. Zbl 1195.35205, MR 2661340, 10.1016/j.na.2010.04.057
.

Files

Files Size Format View
AplMat_57-2012-3_4.pdf 330.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo