Previous |  Up |  Next

Article

Title: Smooth bifurcation for a Signorini problem on a rectangle (English)
Author: Eisner, Jan
Author: Kučera, Milan
Author: Recke, Lutz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 131-138
Summary lang: English
.
Category: math
.
Summary: We study a parameter depending semilinear elliptic PDE on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. We describe smooth branches of smooth nontrivial solutions bifurcating from the trivial solution branch in eigenvalues of the linearized problem. In particular, the contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tools of the proof are first a certain local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations (which determine the ends of the contact intervals), and secondly an application of the classical Crandall-Rabinowitz type local bifurcation techniques (scaling and application of the Implicit Function Theorem) to that system. (English)
Keyword: Signorini problem
Keyword: smooth bifurcation
Keyword: variational inequality
Keyword: boundary obstacle
Keyword: Crandall-Rabinowitz type theorem
MSC: 35B32
MSC: 35J87
MSC: 47J07
MSC: 49J20
idZBL: Zbl 1265.35023
idMR: MR2978259
DOI: 10.21136/MB.2012.142859
.
Date available: 2012-06-08T10:06:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142859
.
Reference: [1] Eisner, J., Kučera, M., Recke, L.: Smooth dependence on data of solutions and contact regions for a Signorini problem.Nonlinear Anal., Theory Methods Appl. 72 (2010), 1358-1378. Zbl 1183.35150, MR 2577537, 10.1016/j.na.2009.08.014
Reference: [2] Eisner, J., Kučera, M., Recke, L.: Smooth bifurcation branches of solutions for a Signorini problem.Nonlinear Anal., Theory Methods Appl. 74 (2011), 1853-1877. Zbl 1213.35233, MR 2764386, 10.1016/j.na.2010.10.058
Reference: [3] Frehse, J.: A regularity result for nonlinear elliptic systems.Math. Z. 121 (1971), 305-310. Zbl 0219.35036, MR 0320518, 10.1007/BF01109976
Reference: [4] Grisvard, P.: Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain.Proceedings of the Third Symposium on the Numerical Solution of PDEs, SYNSPADE 1975 B. Hubbard Academic Press, New York (1976), 207-274. Zbl 0361.35022, MR 0466912
Reference: [5] Gröger, K.: A $W^{1,p}$-estimate for solutions to mixed boundary value problems for second order elliptic differential equations.Math. Ann. 283 (1989), 679-687. MR 0990595, 10.1007/BF01442860
Reference: [6] Kinderlehrer, D.: The smoothness of the solution of the boundary obstacle problem.J. Math. Pures Appl. 60 (1981), 193-212. Zbl 0459.35092, MR 0620584
Reference: [7] Nazarov, S. A., Plamenevskii, B. A.: Elliptic Problems in Domains with Piecewise Smooth Boundaries.De Gruyter Expositions in Mathematics vol. 13, de Gruyter, Berlin (1994). Zbl 0806.35001, MR 1283387
.

Files

Files Size Format View
MathBohem_137-2012-2_3.pdf 253.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo