Previous |  Up |  Next

Article

Title: On similarity solution of a boundary layer problem for power-law fluids (English)
Author: Bognár, Gabriella
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 139-148
Summary lang: English
.
Category: math
.
Summary: The boundary layer equations for the non-Newtonian power law fluid are examined under the classical conditions of uniform flow past a semi infinite flat plate. We investigate the behavior of the similarity solution and employing the Crocco-like transformation we establish the power series representation of the solution near the plate. (English)
Keyword: similarity solution
Keyword: boundary layer problem
Keyword: power series solution
MSC: 34B40
MSC: 35C06
MSC: 35Q35
MSC: 76A05
idZBL: Zbl 1265.35258
idMR: MR2978260
DOI: 10.21136/MB.2012.142860
.
Date available: 2012-06-08T10:07:31Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142860
.
Reference: [1] Abbasbandy, S.: A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method.Chaos Solitons Fractals 31 (2007), 257-260. MR 2262129, 10.1016/j.chaos.2005.10.071
Reference: [2] Acrivos, A., Shah, A., Petersen, E. E.: Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces.AIChE J. 6 (1960), 312-317. 10.1002/aic.690060227
Reference: [3] Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung.Z. Math. Phys. 56 (1908), 1-37.
Reference: [4] Briot, Ch., Bouquet, J. K.: Étude des fonctions d'une variable imaginaire.Journal de l'École Polytechnique, Cashier 36 (1856), 85-131.
Reference: [5] Guedda, M.: Similarity and pseudosimilarity soutions of degenerate boundary-layer equations.M. Chipot Handbook of Differential Equations, Stationary Partial Differential Equation vol. 4, North Holland (2007), 117-202. MR 2569332, 10.1016/S1874-5733(07)80006-4
Reference: [6] He, J-H.: Comparison of homotopy perturbation method and homotopy analysis method.Appl. Math. Comput. 156 (2004), 527-539. Zbl 1062.65074, MR 2087530, 10.1016/j.amc.2003.08.008
Reference: [7] Henrici, P.: Applied and Computational Complex Analysis. Vol. 1.Power Series---Integration---Conformal Mappings---Location of Zeros. Wiley, New York (1974). Zbl 0313.30001, MR 0372162
Reference: [8] Hille, E.: Ordinary Differential Equations in the Complex Domain.John Wiley, New York (1976). Zbl 0343.34007, MR 0499382
Reference: [9] Howarth, L.: On the solution of the laminar boundary layer equations.Proc. R. Soc. Lond. A 164 (1938), 547-579. 10.1098/rspa.1938.0037
Reference: [10] Liao, S.-J.: An explicit, totally analytic, solution for Blasius viscous flow problems.Int. J. Non-Lin. Mech. 34 (1999), 758-778. MR 1688603
Reference: [11] Ince, E. L.: Ordinary Differential Equations.Dover Publ., New York (1956). MR 0010757
Reference: [12] Nachman, A., Callegari, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids.SIAM J. Appl. Math. 38 (1980), 275-281. Zbl 0453.76002, MR 0564014, 10.1137/0138024
Reference: [13] Schlichting, H., Gersten, K.: Boundary Layer Theory (8th revised and enlarged edition).Springer, Berlin (2000). MR 1765242
Reference: [14] Schowalter, W. R.: The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions.AIChE J. 6 (1960), 24-28. 10.1002/aic.690060105
Reference: [15] Töpfer, K.: Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung.Z. Math. Phys. 60 (1912), 397-398.
.

Files

Files Size Format View
MathBohem_137-2012-2_4.pdf 241.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo