Previous |  Up |  Next


similarity solution; boundary layer problem; power series solution
The boundary layer equations for the non-Newtonian power law fluid are examined under the classical conditions of uniform flow past a semi infinite flat plate. We investigate the behavior of the similarity solution and employing the Crocco-like transformation we establish the power series representation of the solution near the plate.
[1] Abbasbandy, S.: A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method. Chaos Solitons Fractals 31 (2007), 257-260. DOI 10.1016/j.chaos.2005.10.071
[2] Acrivos, A., Shah, A., Petersen, E. E.: Momentum and heat transfer in laminar boundary-layer flows of non-Newtonian fluids past external surfaces. AIChE J. 6 (1960), 312-317. DOI 10.1002/aic.690060227
[3] Blasius, H.: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 56 (1908), 1-37.
[4] Briot, Ch., Bouquet, J. K.: Étude des fonctions d'une variable imaginaire. Journal de l'École Polytechnique, Cashier 36 (1856), 85-131.
[5] Guedda, M.: Similarity and pseudosimilarity soutions of degenerate boundary-layer equations. M. Chipot Handbook of Differential Equations, Stationary Partial Differential Equation vol. 4, North Holland (2007), 117-202. DOI 10.1016/S1874-5733(07)80006-4 | MR 2569332
[6] He, J-H.: Comparison of homotopy perturbation method and homotopy analysis method. Appl. Math. Comput. 156 (2004), 527-539. DOI 10.1016/j.amc.2003.08.008 | MR 2087530 | Zbl 1062.65074
[7] Henrici, P.: Applied and Computational Complex Analysis. Vol. 1. Power Series---Integration---Conformal Mappings---Location of Zeros. Wiley, New York (1974). MR 0372162 | Zbl 0313.30001
[8] Hille, E.: Ordinary Differential Equations in the Complex Domain. John Wiley, New York (1976). MR 0499382 | Zbl 0343.34007
[9] Howarth, L.: On the solution of the laminar boundary layer equations. Proc. R. Soc. Lond. A 164 (1938), 547-579. DOI 10.1098/rspa.1938.0037
[10] Liao, S.-J.: An explicit, totally analytic, solution for Blasius viscous flow problems. Int. J. Non-Lin. Mech. 34 (1999), 758-778. MR 1688603
[11] Ince, E. L.: Ordinary Differential Equations. Dover Publ., New York (1956). MR 0010757
[12] Nachman, A., Callegari, A.: A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38 (1980), 275-281. DOI 10.1137/0138024 | MR 0564014 | Zbl 0453.76002
[13] Schlichting, H., Gersten, K.: Boundary Layer Theory (8th revised and enlarged edition). Springer, Berlin (2000). MR 1765242
[14] Schowalter, W. R.: The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions. AIChE J. 6 (1960), 24-28. DOI 10.1002/aic.690060105
[15] Töpfer, K.: Bemerkung zu dem Aufsatz von H. Blasius: Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z. Math. Phys. 60 (1912), 397-398.
Partner of
EuDML logo