Previous |  Up |  Next

Article

Title: Controllability and observability of time-invariant linear dynamic systems (English)
Author: Bohner, Martin
Author: Wintz, Nick
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 149-163
Summary lang: English
.
Category: math
.
Summary: In the paper, we unify and extend some basic properties for linear control systems as they appear in the continuous and discrete cases. In particular, we examine controllability, reachability, and observability for time-invariant systems and establish a duality principle. (English)
Keyword: time scale
Keyword: dynamic equation
Keyword: exponential function
Keyword: controllability
Keyword: reachability
Keyword: observability
Keyword: duality principle
Keyword: time invariance
MSC: 34A30
MSC: 34H05
MSC: 34N05
MSC: 93B05
MSC: 93B07
idZBL: Zbl 1265.34334
idMR: MR2978261
DOI: 10.21136/MB.2012.142861
.
Date available: 2012-06-08T10:08:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142861
.
Reference: [1] Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics.Colloq. Math. Soc. János Bolyai. 53 (1990), 37-56. Zbl 0723.34030, MR 1062633
Reference: [2] Bartosiewicz, Z., Pawłuszewicz, E.: Linear control systems on time scales: unification of continuous and discrete.Proc. of 10th IEEE Int. Conference MMAR. (2004), 263-266. MR 2323260
Reference: [3] Bartosiewicz, Z., Pawłuszewicz, E.: Realizations of linear control systems on time scales.Control Cybernet. 35 (2006), 769-786. Zbl 1133.93033, MR 2323260
Reference: [4] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales.Birkhäuser, Basel (2001). Zbl 0993.39010, MR 1843232
Reference: [5] Bohner, M., Peterson, A., eds.: Advances in Dynamic Equations on Time Scales.Birkhäuser, Boston, MA (2003). Zbl 1025.34001, MR 1962542
Reference: [6] DaCunha, J.: Transition matrix and generalized matrix exponential via the Peano-{B}aker series.J. Difference Equ. Appl. 11 (2005), 1245-1264. Zbl 1093.39017, MR 2191005, 10.1080/10236190500272798
Reference: [7] Davis, J. M., Gravagne, I. A., Jackson, B. J., II, R. J. Marks: Controllability, observability, realizability, and stability of dynamic linear systems.Electron. J. Diff. Equ. 37 (2009), 1-32. MR 2495842
Reference: [8] Fausett, L. V., Murty, K. N.: Controllability, observability and realizability criteria on time scale dynamical systems.Nonlinear Stud. 11 (2004), 627-638. MR 2100755
Reference: [9] Hilscher, R., Zeidan, V.: Weak maximum principle and accessory problem for control problems on time scales.Nonlinear Anal. 70 (2009), 3209-3226. Zbl 1157.49030, MR 2503067
Reference: [10] Kalman, R. E.: Contributions to the theory of optimal control.Bol. Soc. Mat. Mexicana. 2 (1960), 102-119. Zbl 0112.06303, MR 0127472
Reference: [11] Kalman, R. E.: On the general theory of control systems.Proc. 1st IFAC Congress Automatic Control. 1 (1960), 481-492.
Reference: [12] Kalman, R. E.: Mathematical description of linear dynamical systems.J. SIAM Control Ser. A Control. 1 (1963), 152-192. Zbl 0145.34301, MR 0152167
Reference: [13] Kalman, R. E., Ho, Y. C., Narendra, K. S.: Controllability of linear dynamical systems.Contrib. Differ. Equ. 1 (1963), 189-213. Zbl 0151.13303, MR 0155070
Reference: [14] Molnar, S., Szigeti, F.: Controllability and reachability of dynamic discrete-time linear systems.Proceedings of the 4th International Conference on Control and Automation (2003), 350-354. MR 1368381
Reference: [15] Wintz, N.: The Kalman filter on time scales.PhD Thesis, Missouri University of Science and Technology, Rolla, Missouri, USA (2009). MR 2941934
Reference: [16] Zafer, A.: The matrix exponential on time scales.ANZIAM J. 48 (2006), 99-106. MR 2263186, 10.1017/S1446181100003436
.

Files

Files Size Format View
MathBohem_137-2012-2_5.pdf 262.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo