Previous |  Up |  Next

Article

Title: On a class of $m$-point boundary value problems (English)
Author: Luca, Rodica
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 2
Year: 2012
Pages: 187-194
Summary lang: English
.
Category: math
.
Summary: We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied. (English)
Keyword: differential system
Keyword: boundary condition
Keyword: positive solution
Keyword: fixed point theorem
MSC: 34B10
MSC: 34B18
idZBL: Zbl 1265.34084
idMR: MR2978264
DOI: 10.21136/MB.2012.142864
.
Date available: 2012-06-08T10:11:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142864
.
Reference: [1] Anderson, D. R.: Solutions to second-order three-point problems on time scales.J. Differ. Equ. Appl. 8 (2002), 673-688. Zbl 1021.34011, MR 1914597, 10.1080/1023619021000000717
Reference: [2] Anderson, D. R.: Twin $n$-point boundary value problems.Appl. Math. Lett. 17 (2004), 1053-1059. Zbl 1061.34008, MR 2087754, 10.1016/j.aml.2004.07.008
Reference: [3] Avery, R.: Three positive solutions of a discrete second order conjugate problem.Panam. Math. J. 8 (1998), 79-96. Zbl 0958.39024, MR 1620423
Reference: [4] Boucherif, A.: Second-order boundary value problems with integral boundary conditions.Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. Zbl 1169.34310, MR 2468243, 10.1016/j.na.2007.12.007
Reference: [5] Cheung, W. S., Ren, J.: Positive solution for discrete three-point boundary value problems.Aust. J. Math. Anal. Appl. 1 (2004), 7 p. Zbl 1079.39004, MR 2111260
Reference: [6] Ge, W., Xue, C.: Some fixed point theorems and existence of positive solutions of two-point boundary-value problems.Nonlinear Anal., Theory Methods Appl. 70 (2009), 16-31. MR 2468215, 10.1016/j.na.2007.11.040
Reference: [7] Guo, Y., Shan, W., Ge, W.: Positive solutions for second order $m$-point boundary value problems.J. Comput. Appl. Math. 151 (2003), 415-424. Zbl 1026.34016, MR 1956792, 10.1016/S0377-0427(02)00739-2
Reference: [8] Henderson, J., Ntouyas, S. K.: Positive solutions for systems of nonlinear boundary value problems.Nonlinear Stud. 15 (2008), 51-60. Zbl 1148.34016, MR 2391312
Reference: [9] Henderson, J., Ntouyas, S. K.: Positive solutions for systems of three-point nonlinear boundary value problems.Austr. J. Math. Anal. Appl. 5 (2008), 1-9. Zbl 1177.34032, MR 2413225
Reference: [10] Henderson, J., Ntouyas, S. K., Purnaras, I. K.: Positive solutions for systems of three-point nonlinear discrete boundary value problems.Neural Parallel Sci. Comput. 16 (2008), 209-224. Zbl 1153.39014, MR 2436487
Reference: [11] Il'in, V. A., Moiseev, E. I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite-difference aspects.Differ. Equ. 23 (1987), 803-811.
Reference: [12] Li, W. T., Sun, H. R.: Positive solutions for second-order $m$-point boundary value problems on times scales.Acta Math. Sin., Engl. Ser. 22 (2006), 1797-1804. MR 2262439, 10.1007/s10114-005-0748-5
Reference: [13] Luca, R.: Positive solutions for a second-order $m$-point boundary value problem.Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18 (2011), 161-176. Zbl 1216.34022, MR 2768127
Reference: [14] Ma, R.: Positive solutions for second-order three-point boundary value problems.Appl. Math. Lett. 14 (2001), 1-5. Zbl 0989.34009, MR 1793693, 10.1016/S0893-9659(00)00102-6
Reference: [15] Ma, R., Raffoul, Y.: Positive solutions of three-point nonlinear discrete second order boundary value problem.J. Difference Equ. Appl. 10 (2004), 129-138. Zbl 1056.39024, MR 2033338, 10.1080/1023619031000114323
Reference: [16] Ntouyas, S. K.: Nonlocal initial and boundary value problems: a survey.Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier, Amsterdam 461-557 (2005). Zbl 1098.34011, MR 2182761
Reference: [17] Sun, H. R., Li, W. T.: Existence of positive solutions for nonlinear three-point boundary value problems on time scales.J. Math. Anal. Appl. 299 (2004), 508-524. MR 2098256, 10.1016/j.jmaa.2004.03.079
.

Files

Files Size Format View
MathBohem_137-2012-2_8.pdf 231.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo