Previous |  Up |  Next

Article

Keywords:
differential system; boundary condition; positive solution; fixed point theorem
Summary:
We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some $m$-point boundary conditions. The nonexistence of positive solutions is also studied.
References:
[1] Anderson, D. R.: Solutions to second-order three-point problems on time scales. J. Differ. Equ. Appl. 8 (2002), 673-688. DOI 10.1080/1023619021000000717 | MR 1914597 | Zbl 1021.34011
[2] Anderson, D. R.: Twin $n$-point boundary value problems. Appl. Math. Lett. 17 (2004), 1053-1059. DOI 10.1016/j.aml.2004.07.008 | MR 2087754 | Zbl 1061.34008
[3] Avery, R.: Three positive solutions of a discrete second order conjugate problem. Panam. Math. J. 8 (1998), 79-96. MR 1620423 | Zbl 0958.39024
[4] Boucherif, A.: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal., Theory Methods Appl. 70 (2009), 364-371. DOI 10.1016/j.na.2007.12.007 | MR 2468243 | Zbl 1169.34310
[5] Cheung, W. S., Ren, J.: Positive solution for discrete three-point boundary value problems. Aust. J. Math. Anal. Appl. 1 (2004), 7 p. MR 2111260 | Zbl 1079.39004
[6] Ge, W., Xue, C.: Some fixed point theorems and existence of positive solutions of two-point boundary-value problems. Nonlinear Anal., Theory Methods Appl. 70 (2009), 16-31. DOI 10.1016/j.na.2007.11.040 | MR 2468215
[7] Guo, Y., Shan, W., Ge, W.: Positive solutions for second order $m$-point boundary value problems. J. Comput. Appl. Math. 151 (2003), 415-424. DOI 10.1016/S0377-0427(02)00739-2 | MR 1956792 | Zbl 1026.34016
[8] Henderson, J., Ntouyas, S. K.: Positive solutions for systems of nonlinear boundary value problems. Nonlinear Stud. 15 (2008), 51-60. MR 2391312 | Zbl 1148.34016
[9] Henderson, J., Ntouyas, S. K.: Positive solutions for systems of three-point nonlinear boundary value problems. Austr. J. Math. Anal. Appl. 5 (2008), 1-9. MR 2413225 | Zbl 1177.34032
[10] Henderson, J., Ntouyas, S. K., Purnaras, I. K.: Positive solutions for systems of three-point nonlinear discrete boundary value problems. Neural Parallel Sci. Comput. 16 (2008), 209-224. MR 2436487 | Zbl 1153.39014
[11] Il'in, V. A., Moiseev, E. I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite-difference aspects. Differ. Equ. 23 (1987), 803-811.
[12] Li, W. T., Sun, H. R.: Positive solutions for second-order $m$-point boundary value problems on times scales. Acta Math. Sin., Engl. Ser. 22 (2006), 1797-1804. DOI 10.1007/s10114-005-0748-5 | MR 2262439
[13] Luca, R.: Positive solutions for a second-order $m$-point boundary value problem. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 18 (2011), 161-176. MR 2768127 | Zbl 1216.34022
[14] Ma, R.: Positive solutions for second-order three-point boundary value problems. Appl. Math. Lett. 14 (2001), 1-5. DOI 10.1016/S0893-9659(00)00102-6 | MR 1793693 | Zbl 0989.34009
[15] Ma, R., Raffoul, Y.: Positive solutions of three-point nonlinear discrete second order boundary value problem. J. Difference Equ. Appl. 10 (2004), 129-138. DOI 10.1080/1023619031000114323 | MR 2033338 | Zbl 1056.39024
[16] Ntouyas, S. K.: Nonlocal initial and boundary value problems: a survey. Handbook of Differential Equations: Ordinary Differential Equations, Vol. II, Elsevier, Amsterdam 461-557 (2005). MR 2182761 | Zbl 1098.34011
[17] Sun, H. R., Li, W. T.: Existence of positive solutions for nonlinear three-point boundary value problems on time scales. J. Math. Anal. Appl. 299 (2004), 508-524. DOI 10.1016/j.jmaa.2004.03.079
Partner of
EuDML logo