Previous |  Up |  Next


differential inclusion; global solution; a priori bound
The paper presents an existence result for global solutions to the finite dimensional differential inclusion $y' \in F( y) ,$ $F$ being defined on a closed set $K.$ A priori bounds for such solutions are provided.
[1] Aubin, J. P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990). MR 1048347 | Zbl 0713.49021
[2] Cârjă, O., Lazu, A.: Lyapunov pairs for continuous perturbations of nonlinear evolutions. Nonlinear Anal., Theory Methods Appl. 71 (2009), 1012-1018. DOI 10.1016/ | MR 2527520 | Zbl 1173.37009
[3] Cârjă, O., Motreanu, D.: Characterization of Lyapunov pairs in the nonlinear case and applications. Nonlinear Anal., Theory Methods Appl. 70 (2009), 352-363. MR 2468242 | Zbl 1172.34039
[4] Cârjă, O., Necula, M., Vrabie, I. I.: Viability, Invariance and Applications. North-Holland Mathematics Studies 207, Elsevier, Amsterdam (2007). MR 2488820 | Zbl 1239.34068
[5] Clarke, F. H., Ledyaev, Yu. S., Stern, R. J., Wolenski, P. R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics 178, Springer, New York (1998). MR 1488695 | Zbl 1047.49500
[6] Fattorini, H. O.: Infinite Dimensional Optimization and Control Theory. Encyclopedia of Mathematics and Its Applications 62, Cambridge University Press, Cambridge (1999). MR 1669395 | Zbl 0931.49001
Partner of
EuDML logo