Previous |  Up |  Next

Article

Title: On weakly $\phi $-symmetric Kenmotsu Manifolds (English)
Author: Hui, Shyamal Kumar
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 1
Year: 2012
Pages: 43-50
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds. It is shown that weakly $\phi $-symmetric and weakly $\phi $-Ricci symmetric Kenmotsu manifolds are $\eta $-Einstein. (English)
Keyword: weakly $\phi $-symmetric
Keyword: weakly $\phi $-Ricci symmetric
Keyword: Kenmotsu manifold
Keyword: Einstein manifold
Keyword: $\eta $-Einstein manifold
MSC: 53C15
MSC: 53C25
MSC: 53D15
idZBL: Zbl 06204920
idMR: MR3060008
.
Date available: 2012-06-25T08:22:17Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/142873
.
Reference: [1] Blair, D. E.: Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics 509, Springer, Berlin, 1976. Zbl 0319.53026, MR 0467588
Reference: [2] Cartan, E.: Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54 (1926), 214–264. MR 1504900
Reference: [3] Chaki, M. C.: On pseudo-symmetric manifolds. An. Sti. Ale Univ., “AL. I. CUZA" Din Iasi 33 (1987), 53–58. Zbl 0634.53012, MR 0925690
Reference: [4] Chaki, M. C.: On generalized pseudo-symmetric manifolds. Publ. Math. Debrecen 45 (1994), 305–312.
Reference: [5] De, U. C.: On $\phi $-symmetric Kenmotsu manifolds. Int. Electronic J. Geom. 1, 1 (2008), 33–38. Zbl 1138.53029, MR 2390388
Reference: [6] De, U. C., Bandyopadhyay, S.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 54 (1999), 377–381. Zbl 0922.53018, MR 1694492
Reference: [7] Deszcz R.: On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A 44, 1 (1992), 1–34. Zbl 0808.53012, MR 1315367
Reference: [8] Hui, S. K., Matsuyama, Y., Shaikh, A. A.: On decomposable weakly conformally symmetric manifolds. Acta Math. Hungar. 128, 1-2 (2010), 82–95. Zbl 1224.53057, MR 2665800
Reference: [9] Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93–103. Zbl 0245.53040, MR 0319102, 10.2748/tmj/1178241594
Reference: [10] Mikeš, J.: Projective-symmetric and projective-recurrent affinely connected spaces. Tr. Geom. Semin. 13 (1981), 61–62 (in Russian).
Reference: [11] Mikeš, J.: Geodesic mappings of special Riemannian spaces. In: Topics in differential geometry, Pap. Colloq., Hajduszoboszló, Hung., 1984, Vol. 2 Colloq. Math. Soc. János Bolyai 46 (1988), 793–813. MR 0933875
Reference: [12] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 78, 3 (1996), 311–333. MR 1384327, 10.1007/BF02365193
Reference: [13] Mikeš, J., Tolobaev, O. S.: Symmetric and projectively symmetric affinely connected spaces. Studies on topological and generalized spaces, Collect. Sci. Works, Frunze (1988), 58–63 (in Russian). MR 1165335
Reference: [14] Oubiña, J. A.: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. Zbl 0611.53032, MR 0834769
Reference: [15] Özgür, C.: On weakly symmetric Kenmotsu manifolds. Diff. Geom.-Dynamical Systems 8 (2006), 204–209. Zbl 1156.53309, MR 2220726
Reference: [16] Prvanović, M.: On weakly symmetric Riemmanian manifolds. Publ. Math. Debrecen 46 (1995), 19–25.
Reference: [17] Roter, W.: On conformally symmetric Ricci recurrent space. Colloq. Math. 31 (1974), 87–96. MR 0372768
Reference: [18] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. J. Indian Math. Soc. 20 (1956), 47–87. Zbl 0072.08201, MR 0088511
Reference: [19] Shaikh, A. A., Hui, S. K.: On weakly conharmonically symmetric manifolds. Tensor, N. S. 70 (2008), 119–134. Zbl 1193.53115, MR 2546909
Reference: [20] Shaikh, A. A., Hui, S. K.: On decomposable weakly conharmonically symmetric manifolds. Lobachevski J. Math. 29, 4 (2008), 206–215. Zbl 1167.53305, MR 2461622, 10.1134/S1995080208040021
Reference: [21] Shaikh, A. A., Hui, S. K.: On weakly concircular symmetric manifolds. Ann. Sti. Ale Univ., “Al. I. CUZA", Din Iasi 55, 1 (2009), 167–186. Zbl 1199.53057, MR 2510720
Reference: [22] Shaikh, A. A., Hui, S. K.: On weakly projective symmetric manifolds. Acta Math. Academiae Paedagogicae Nyiregyhaziensis 25, 2 (2009), 247–269. Zbl 1224.53039, MR 2570946
Reference: [23] Shaikh, A. A., Hui, S. K.: On weak symmetries of trans-Sasakian manifolds. Proc. Estonian Acad. Sci. 58, 4 (2009), 213–223. Zbl 1185.53032, MR 2604249
Reference: [24] Shaikh, A. A., Jana, S. K.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen. 71 (2007), 27–41. Zbl 1136.53019, MR 2340032
Reference: [25] Shaikh, A. A., Jana, S. K.: On weakly quasi-conformally symmetric manifolds. SUT. J. Math. 43, 1 (2007), 61–83. Zbl 1139.53008, MR 2417157
Reference: [26] Shukla, S. S., Shukla, M. K.: On $\phi $-Ricci symmetric Kenmotsu manifolds. Novi Sad J. Math. 39, 2 (2009), 89–95. Zbl 1224.53063, MR 2656183
Reference: [27] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces. Nauka, Moscow, 1979, (in Russian). Zbl 0637.53020, MR 0552022
Reference: [28] Szabó, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R = 0$, The local version. J. Diff. Geom. 17 (1982), 531–582. MR 0683165
Reference: [29] Tanno, S.: The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J. 21 (1969), 21–38. Zbl 1168.51302, MR 0242094, 10.2748/tmj/1178243031
Reference: [30] Takahashi, T.: Sasakian $\phi $-symmetric spaces. Tohoku Math. J. 29 (1977), 91–113. MR 0440472, 10.2748/tmj/1178240699
Reference: [31] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Coll. Math. Soc. J. Bolyai 56 (1989), 663–670. MR 1211691
Reference: [32] Tamássy, L., Binh, T. Q.: On weak symmetrics of Einstein and Sasakian manifolds. Tensor, N. S. 53 (1993), 140–148. MR 1455411
Reference: [33] Walker, A. G.: On Ruses spaces of recurrent curvature. Proc. London Math. Soc. 52 (1950), 36–64. MR 0037574
.

Files

Files Size Format View
ActaOlom_51-2012-1_4.pdf 203.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo