Previous |  Up |  Next

Article

Title: The free commutative automorphic $2$-generated loop of nilpotency class $3$ (English)
Author: Barros, Dylene Agda Souza de
Author: Grishkov, Alexander
Author: Vojtěchovský, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 3
Year: 2012
Pages: 321-336
Summary lang: English
.
Category: math
.
Summary: A loop is automorphic if all its inner mappings are automorphisms. We construct the free commutative automorphic $2$-generated loop of nilpotency class $3$. It has dimension $8$ over the integers. (English)
Keyword: free commutative automorphic loop
Keyword: automorphic loop
Keyword: associator calculus
MSC: 20N05
idZBL: Zbl 1256.20065
idMR: MR3017833
.
Date available: 2012-08-31T11:32:12Z
Last updated: 2014-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/142926
.
Reference: [1] Barros D.: Commutative automorphic loops.PhD dissertation, University of Sao Paulo, in preparation.
Reference: [2] Barros D., Grishkov A., Vojtěchovský P.: Commutative automorphic loops of order $p^3$.J. Algebra Appl.(to appear).
Reference: [3] Bruck R.H.: A Survey of Binary Systems.Springer, 1971. Zbl 0141.01401, MR 0093552
Reference: [4] Bruck R.H., Paige L.J.: Loops whose inner mappings are automorphisms.Ann. of Math. (2) 63 (1956), 308–323. Zbl 0074.01701, MR 0076779, 10.2307/1969612
Reference: [5] Csörgö P.: The multiplication group of a finite commutative automorphic loop of order of power of an odd prime $p$ is a $p$-group.J. Algebra 350 (2012), no. 1, 77–83. MR 2859876, 10.1016/j.jalgebra.2011.09.038
Reference: [6] Jedlička P., Kinyon M., Vojtěchovský P.: The structure of commutative automorphic loops.Trans. Amer. Math. Soc. 363 (2011), no. 1, 365–384. Zbl 1215.20060, MR 2719686, 10.1090/S0002-9947-2010-05088-3
Reference: [7] Jedlička P., Kinyon M., Vojtěchovský P.: Constructions of commutative automorphic loops.Comm. Algebra 38 (2010), no. 9, 3243–3267. Zbl 1209.20069, MR 2724218, 10.1080/00927870903200877
Reference: [8] Jedlička P., Kinyon M., Vojtěchovský P.: Nilpotency in automorphic loops of prime power order.J. Algebra 350 (2012), no. 1, 64–76. MR 2859875, 10.1016/j.jalgebra.2011.09.034
Reference: [9] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops.LMS J. Comput. Math. 14 (2011), 200–213. Zbl 1225.20052, MR 2831230, 10.1112/S1461157010000173
Reference: [10] Grishkov A.N., Shestakov I.P.: Commutative Moufang loops and alternative algebras.J. Algebra 333 (2011), 1–13. Zbl 1243.20076, MR 2785933, 10.1016/j.jalgebra.2010.11.020
Reference: [11] Kinyon M.K., Kunen K., Phillips J.D., Vojtěchovský P.: The structure of automorphic loops.in preparation.
Reference: [12] Wolfram Research, Inc.: Mathematica.version 8.0, Wolfram Research, Inc., Champaign, Illinois, 2010.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-3_1.pdf 357.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo