Title:
|
Do finite Bruck loops behave like groups? (English) |
Author:
|
Baumeister, B. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
337-346 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops. (English) |
Keyword:
|
finite loops |
Keyword:
|
finite Bruck loops |
Keyword:
|
finite Bol loops |
Keyword:
|
finite $A_r$-loops |
Keyword:
|
classical theorems for finite loops |
MSC:
|
20B05 |
MSC:
|
20N05 |
idZBL:
|
Zbl 1257.20066 |
idMR:
|
MR3017834 |
. |
Date available:
|
2012-08-31T11:33:59Z |
Last updated:
|
2014-10-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142928 |
. |
Reference:
|
[AA43] Albert A.A.: Quasigroups I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7 |
Reference:
|
[A86] Aschbacher M.: Finite Group Theory.Cambridge University Press, Cambridge, 1986. Zbl 0997.20001, MR 0895134 |
Reference:
|
[A05] Aschbacher M.: On Bol loops of exponent $2$.J. Algebra 288 (2005), 99–136. Zbl 1090.20037, MR 2138373, 10.1016/j.jalgebra.2005.03.005 |
Reference:
|
[AKP06] Aschbacher M., Kinyon M., Phillips J.D.: Finite Bruck loops.Trans. Amer. Math. Soc. 358 (2006), no. 7, 3061–3075. Zbl 1102.20046, MR 2216258, 10.1090/S0002-9947-05-03778-5 |
Reference:
|
[Ba39] Baer R.: Nets and groups.Trans. Amer. Math. Soc 47 (1939), 110–141. Zbl 0023.21502, MR 0000035 |
Reference:
|
[Ba45] Baer R.: The homomorphism theorems for loops.Amer. J. Math. 67 (1945), 450–460. Zbl 0063.00166, MR 0012302, 10.2307/2371960 |
Reference:
|
[Bo37] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414–431. Zbl 0016.22603, MR 1513147, 10.1007/BF01594185 |
Reference:
|
[BS10] Baumeister B., Stein A.: Self-invariant $1$-factorizations of complete graphs and finite Bol loops of exponent $2$.Beiträge Algebra Geom. 51 (2010), no. 1, 117–135. Zbl 1208.20064, MR 2650481 |
Reference:
|
[BS11] Baumeister B., Stein A.: The finite Bruck loops.J. Algebra 330 (2011), 206–220. Zbl 1235.20059, MR 2774625, 10.1016/j.jalgebra.2010.11.017 |
Reference:
|
[BSS11] Baumeister B., Stein A., Stroth G.: On Bruck loops of $2$-power exponent.J. Algebra 327 (2011), 316–336. Zbl 1233.20059, MR 2746041, 10.1016/j.jalgebra.2010.10.033 |
Reference:
|
[Br58] Bruck R.H.: A survey of binary systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl 0141.01401, MR 0093552 |
Reference:
|
[Bu78] Burn R.P.: Finite Bol loops.Math. Proc. Cambridge Philos. Soc. 84 (1978), 377–385. Zbl 0571.20069, MR 0492030, 10.1017/S0305004100055213 |
Reference:
|
[Ga11] Gagola S.M., III: How and why Moufang loops behave like groups.Quasigroups Related Systems 19 (2011), 1–22. MR 2850316 |
Reference:
|
[G64] Glauberman G.: On loops of odd order.J. Algebra 1 (1964), 374–396. Zbl 0155.03901, MR 0175991, 10.1016/0021-8693(64)90017-1 |
Reference:
|
[G68] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393–414. Zbl 0155.03901, MR 0222198, 10.1016/0021-8693(68)90050-1 |
Reference:
|
[JKV11] Jedlička P., Kinyon M.K., Vojtěchovský P.: The structure of commutative automorphic loops.Trans. Amer. Math. Soc. 363 (2011), 365–384. Zbl 1215.20060, MR 2719686, 10.1090/S0002-9947-2010-05088-3 |
Reference:
|
[JKNV11] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops.LMS J. Comput. Math. 14 (2011), 200–213. Zbl 1225.20052, MR 2831230, 10.1112/S1461157010000173 |
Reference:
|
[N98] Nagy G.P.: Solvability of universal Bol $2$-loops.Comm. Algebra 26 (1998), no. 1, 549–555. Zbl 0895.20054, MR 1604103, 10.1080/00927879808826146 |
Reference:
|
[N08] Nagy G.P.: A class of simple proper Bol loops.Manuscripta Math. 127 (2008), no. 1, 81–88. Zbl 1167.20038, MR 2429915, 10.1007/s00229-008-0188-5 |
Reference:
|
[N09] Nagy G.P.: A class of finite simple Bol loops of exponent $2$.Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR 2515813, 10.1090/S0002-9947-09-04646-7 |
Reference:
|
[N] Nagy G.P.: Finite simple left Bol loops.\begin{verbatim} http://www.math.u-szeged.hu/ nagyg/pub/simple_bol_loops.html \end{verbatim}. |
Reference:
|
[S44] Smiley M.F.: An application of lattice theory to quasigroups.Bull. Amer. Math. Soc. 21 (1944), 782–786. Zbl 0063.07085, MR 0011312, 10.1090/S0002-9904-1944-08237-2 |
. |