Previous |  Up |  Next

Article

Title: Do finite Bruck loops behave like groups? (English)
Author: Baumeister, B.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 3
Year: 2012
Pages: 337-346
Summary lang: English
.
Category: math
.
Summary: This note contains Sylow's theorem, Lagrange's theorem and Hall's theorem for finite Bruck loops. Moreover, we explore the subloop structure of finite Bruck loops. (English)
Keyword: finite loops
Keyword: finite Bruck loops
Keyword: finite Bol loops
Keyword: finite $A_r$-loops
Keyword: classical theorems for finite loops
MSC: 20B05
MSC: 20N05
idZBL: Zbl 1257.20066
idMR: MR3017834
.
Date available: 2012-08-31T11:33:59Z
Last updated: 2014-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/142928
.
Reference: [AA43] Albert A.A.: Quasigroups I.Trans. Amer. Math. Soc. 54 (1943), 507–519. Zbl 0063.00039, MR 0009962, 10.1090/S0002-9947-1943-0009962-7
Reference: [A86] Aschbacher M.: Finite Group Theory.Cambridge University Press, Cambridge, 1986. Zbl 0997.20001, MR 0895134
Reference: [A05] Aschbacher M.: On Bol loops of exponent $2$.J. Algebra 288 (2005), 99–136. Zbl 1090.20037, MR 2138373, 10.1016/j.jalgebra.2005.03.005
Reference: [AKP06] Aschbacher M., Kinyon M., Phillips J.D.: Finite Bruck loops.Trans. Amer. Math. Soc. 358 (2006), no. 7, 3061–3075. Zbl 1102.20046, MR 2216258, 10.1090/S0002-9947-05-03778-5
Reference: [Ba39] Baer R.: Nets and groups.Trans. Amer. Math. Soc 47 (1939), 110–141. Zbl 0023.21502, MR 0000035
Reference: [Ba45] Baer R.: The homomorphism theorems for loops.Amer. J. Math. 67 (1945), 450–460. Zbl 0063.00166, MR 0012302, 10.2307/2371960
Reference: [Bo37] Bol G.: Gewebe und Gruppen.Math. Ann. 114 (1937), 414–431. Zbl 0016.22603, MR 1513147, 10.1007/BF01594185
Reference: [BS10] Baumeister B., Stein A.: Self-invariant $1$-factorizations of complete graphs and finite Bol loops of exponent $2$.Beiträge Algebra Geom. 51 (2010), no. 1, 117–135. Zbl 1208.20064, MR 2650481
Reference: [BS11] Baumeister B., Stein A.: The finite Bruck loops.J. Algebra 330 (2011), 206–220. Zbl 1235.20059, MR 2774625, 10.1016/j.jalgebra.2010.11.017
Reference: [BSS11] Baumeister B., Stein A., Stroth G.: On Bruck loops of $2$-power exponent.J. Algebra 327 (2011), 316–336. Zbl 1233.20059, MR 2746041, 10.1016/j.jalgebra.2010.10.033
Reference: [Br58] Bruck R.H.: A survey of binary systems.Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Heft 20, Reihe: Gruppentheorie, Springer, Berlin-Göttingen-Heidelberg, 1958. Zbl 0141.01401, MR 0093552
Reference: [Bu78] Burn R.P.: Finite Bol loops.Math. Proc. Cambridge Philos. Soc. 84 (1978), 377–385. Zbl 0571.20069, MR 0492030, 10.1017/S0305004100055213
Reference: [Ga11] Gagola S.M., III: How and why Moufang loops behave like groups.Quasigroups Related Systems 19 (2011), 1–22. MR 2850316
Reference: [G64] Glauberman G.: On loops of odd order.J. Algebra 1 (1964), 374–396. Zbl 0155.03901, MR 0175991, 10.1016/0021-8693(64)90017-1
Reference: [G68] Glauberman G.: On loops of odd order II.J. Algebra 8 (1968), 393–414. Zbl 0155.03901, MR 0222198, 10.1016/0021-8693(68)90050-1
Reference: [JKV11] Jedlička P., Kinyon M.K., Vojtěchovský P.: The structure of commutative automorphic loops.Trans. Amer. Math. Soc. 363 (2011), 365–384. Zbl 1215.20060, MR 2719686, 10.1090/S0002-9947-2010-05088-3
Reference: [JKNV11] Johnson K.W., Kinyon M.K., Nagy G.P., Vojtěchovský P.: Searching for small simple automorphic loops.LMS J. Comput. Math. 14 (2011), 200–213. Zbl 1225.20052, MR 2831230, 10.1112/S1461157010000173
Reference: [N98] Nagy G.P.: Solvability of universal Bol $2$-loops.Comm. Algebra 26 (1998), no. 1, 549–555. Zbl 0895.20054, MR 1604103, 10.1080/00927879808826146
Reference: [N08] Nagy G.P.: A class of simple proper Bol loops.Manuscripta Math. 127 (2008), no. 1, 81–88. Zbl 1167.20038, MR 2429915, 10.1007/s00229-008-0188-5
Reference: [N09] Nagy G.P.: A class of finite simple Bol loops of exponent $2$.Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR 2515813, 10.1090/S0002-9947-09-04646-7
Reference: [N] Nagy G.P.: Finite simple left Bol loops.\begin{verbatim} http://www.math.u-szeged.hu/ nagyg/pub/simple_bol_loops.html \end{verbatim}.
Reference: [S44] Smiley M.F.: An application of lattice theory to quasigroups.Bull. Amer. Math. Soc. 21 (1944), 782–786. Zbl 0063.07085, MR 0011312, 10.1090/S0002-9904-1944-08237-2
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-3_2.pdf 325.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo