Title:
|
Pseudoautomorphisms of Bruck loops and their generalizations (English) |
Author:
|
Greer, Mark |
Author:
|
Kinyon, Michael |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
53 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
383-389 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that in a weak commutative inverse property loop, such as a Bruck loop, if $\alpha$ is a right [left] pseudoautomorphism with companion $c$, then $c$ [$c^2$] must lie in the left nucleus. In particular, for any such loop with trivial left nucleus, every right pseudoautomorphism is an automorphism and if the squaring map is a permutation, then every left pseudoautomorphism is an automorphism as well. We also show that every pseudoautomorphism of a commutative inverse property loop is an automorphism, generalizing a well-known result of Bruck. (English) |
Keyword:
|
pseudoautomorphism |
Keyword:
|
Bruck loop |
Keyword:
|
weak commutative inverse property |
MSC:
|
20N05 |
idZBL:
|
Zbl 1256.20062 |
idMR:
|
MR3017837 |
. |
Date available:
|
2012-08-31T11:37:44Z |
Last updated:
|
2014-10-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142931 |
. |
Reference:
|
[1] Aschbacher M.: Bol loops of exponent $2$.J. Algebra 288 (2005), 99–136. Zbl 1090.20037, MR 2138373, 10.1016/j.jalgebra.2005.03.005 |
Reference:
|
[2] Aschbacher M., Kinyon M.K., Phillips J.D.: Finite Bruck loops.Trans. Amer. Math. Soc. 358 (2006), 3061–3075. Zbl 1102.20046, MR 2216258, 10.1090/S0002-9947-05-03778-5 |
Reference:
|
[3] Baumeister B., Stein A.: Self-invariant $1$-factorizations of complete graphs and finite Bol loops of exponent $2$.Beiträge Algebra Geom. 51 (2010), 117–135. Zbl 1208.20064, MR 2650481 |
Reference:
|
[4] Baumeister B., Stroth G., Stein A.: On Bruck loops of $2$-power exponent.J. Algebra 327 (2011), 316–336. Zbl 1233.20059, MR 2746041, 10.1016/j.jalgebra.2010.10.033 |
Reference:
|
[5] Baumeister B., Stein A.: The finite Bruck loops.J. Algebra 330 (2011), 206–220. Zbl 1235.20059, MR 2774625, 10.1016/j.jalgebra.2010.11.017 |
Reference:
|
[6] Bruck R.H.: Pseudo-automorphisms and Moufang loops.Proc. Amer. Math. Soc. 3 (1952), 66–72. Zbl 0046.01803, MR 0047635, 10.1090/S0002-9939-1952-0047635-6 |
Reference:
|
[7] Bruck R.H.: A Survey of Binary Systems.Springer, Berlin, 1971. Zbl 0141.01401, MR 0093552 |
Reference:
|
[8] Glauberman G.: On loops of odd order I.J. Algebra 1 (1964), 374–396. MR 0175991, 10.1016/0021-8693(64)90017-1 |
Reference:
|
[9] Johnson K.W., Sharma B.L.: A variety of loops.Ann. Soc. Sci. Bruxelles Sér. I 92 (1978), 25–41. Zbl 0381.20056, MR 0498926 |
Reference:
|
[10] Kiechle H.: Theory of K-loops.Lecture Notes in Mathematics, 1778, Springer, Berlin, 2002. Zbl 0997.20059, MR 1899153, 10.1007/b83276 |
Reference:
|
[11] McCune W.W.: Prover9, version 2009-11A.http://www.cs.unm.edu/$\sim$mccune/prover9/. |
Reference:
|
[12] Nagy G.P.: A class of finite simple Bol loops of exponent $2$.Trans. Amer. Math. Soc. 361 (2009), 5331–5343. MR 2515813, 10.1090/S0002-9947-09-04646-7 |
Reference:
|
[13] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Math., 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767 |
Reference:
|
[14] Ungar A.A.: Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces.Fundamental Theories of Physics, 117, Kluwer, Dordrecht, 2001. Zbl 0972.83002, MR 1978122 |
. |