Previous |  Up |  Next

Article

Title: Quasigroups arisen by right nuclear extension (English)
Author: Nagy, Péter T.
Author: Stuhl, Izabella
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 53
Issue: 3
Year: 2012
Pages: 391-395
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to prove that a quasigroup $Q$ with right unit is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by the factor quasigroup $Q/G$ if and only if there exists a normalized left transversal $\Sigma \subset Q$ to $G$ in $Q$ such that the right translations by elements of $\Sigma$ commute with all right translations by elements of the subgroup $G$. Moreover, a loop $Q$ is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by a loop if and only if $G$ is middle-nuclear, and there exists a normalized left transversal to $G$ in $Q$ contained in the commutant of $G$. (English)
Keyword: extension of quasigroups
Keyword: right nucleus
Keyword: quasigroup with right unit
Keyword: transversal
MSC: 20N05
idZBL: Zbl 1257.20069
idMR: MR3017838
.
Date available: 2012-08-31T11:38:20Z
Last updated: 2014-10-06
Stable URL: http://hdl.handle.net/10338.dmlcz/142932
.
Reference: [1] Nagy P.T., Strambach K.: Schreier loops.Czechoslovak Math. J. 58 (133) (2008), 759–786. Zbl 1166.20058, MR 2455937, 10.1007/s10587-008-0050-7
Reference: [2] Nagy P.T., Stuhl I.: Right nuclei of quasigroup extensions.Comm. Alg. 40 (2012), 1893-1900. 10.1080/00927872.2011.575676
Reference: [3] Smith J.D.H., Romanowska A.B.: Post-modern algebra.Wiley, New York, 1999. Zbl 0946.00001, MR 1673047
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_53-2012-3_6.pdf 269.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo