Previous |  Up |  Next

Article

Title: Some logarithmic functional equations (English)
Author: Laohakosol, Vichian
Author: Pimsert, Watcharapon
Author: Hengkrawit, Charinthip
Author: Ebanks, Bruce
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 3
Year: 2012
Pages: 173-181
Summary lang: English
.
Category: math
.
Summary: The functional equation $f(y-x) - g(xy) = h\left(1/x-1/y\right)$ is solved for general solution. The result is then applied to show that the three functional equations $f(xy)=f(x)+f(y)$, $f(y-x)-f(xy)=f(1/x-1/y)$ and $f(y-x)-f(x)-f(y)=f(1/x-1/y)$ are equivalent. Finally, twice differentiable solution functions of the functional equation $f(y-x) - g_1(x)-g_2(y) = h\left(1/x-1/y\right)$ are determined. (English)
Keyword: logarithmic functional equation
Keyword: Pexider equations
MSC: 39B20
idMR: MR2995870
DOI: 10.5817/AM2012-3-173
.
Date available: 2012-10-03T14:46:21Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142987
.
Reference: [1] Chung, J.–Y.: A remark on a logarithmic functional equation.J. Math. Anal. Appl. 336 (2007), 745–748. Zbl 1130.39018, MR 2348539, 10.1016/j.jmaa.2007.02.072
Reference: [2] Ebanks, B.: On Heuvers’ logarithmic functional equation.Result. Math. 42 (2002), 37–41. Zbl 1044.39018, MR 1934223, 10.1007/BF03323552
Reference: [3] Heuvers, K. J.: Another logarithmic functional equation.Aequationes Math. 58 (1999), 260–264. MR 1715396, 10.1007/s000100050112
Reference: [4] Heuvers, K. J., Kannappan, P.: A third logarithmic functional equation and Pexider generalizations.Aequationes Math. 70 (2005), 117–121. Zbl 1079.39019, MR 2167989, 10.1007/s00010-005-2792-8
Reference: [5] Kannappan, P.: Functional Equations and Inequalities with Applications.Springer, Dordrecht, 2009. Zbl 1178.39032, MR 2524097
Reference: [6] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities.second ed., Birkhäuser, Basel, 2009. Zbl 1221.39041, MR 2467621
Reference: [7] Rätz, J.: On the theory of functional equation $f(xy) = f(x)+f(y)$.Elem. Math. 21 (1966), 10–13.
.

Files

Files Size Format View
ArchMathRetro_048-2012-3_2.pdf 438.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo