Previous |  Up |  Next

Article

Title: On $\mu $-singular and $\mu $-extending modules (English)
Author: Talebi, Yahya
Author: Hamzekolaee, Ali Reza Moniri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 3
Year: 2012
Pages: 183-196
Summary lang: English
.
Category: math
.
Summary: Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring. (English)
Keyword: $\mu $-essential submodule
Keyword: $\mu $-singular module
Keyword: $\mu $-extending module
Keyword: weakly $\mu $-extending module
MSC: 16D10
MSC: 16D70
MSC: 16D99
MSC: 16S90
idMR: MR2995871
DOI: 10.5817/AM2012-3-183
.
Date available: 2012-10-03T14:49:47Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142988
.
Reference: [1] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over nonsingular CS rings.J. London Math. Soc. 21 (2) (1980), 434–444. MR 0577719, 10.1112/jlms/s2-21.3.434
Reference: [2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman, London, 1994.
Reference: [3] Faith, C.: Algebra II: Ring Theory.Springer–Verlag Berlin–Heidelberg–New York, 1976. MR 0427349
Reference: [4] Goodearl, K. R.: Ring Theory.Marcel Dekker, New York – Basel, 1976. MR 0429962
Reference: [5] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules.London Math. Soc. 147 (1990). MR 1084376
Reference: [6] Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings.Hokkaido Math. J. 13 (1984), 310–338. MR 0764267
Reference: [7] Özcan, A. Ç.: On GCO–modules and M–small modules.Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. Zbl 1038.16005, MR 1981050
Reference: [8] Özcan, A. Ç.: On $\mu $–essential and $\mu $–$M$–singular modules.Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. MR 2513224
Reference: [9] Özcan, A. Ç.: The torsion theory cogenerated by $\delta $–M–small modules and GCO–modules.Comm. Algebra 35 (2007), 623–633. Zbl 1117.16020, MR 2294622, 10.1080/00927870601074871
Reference: [10] Talebi, Y., Vanaja, N.: The torsion theory cogenerated by M–small modules.Comm. Algebra 30 (3) (2002), 1449–1460. Zbl 1005.16029, MR 1892609, 10.1080/00927870209342390
.

Files

Files Size Format View
ArchMathRetro_048-2012-3_3.pdf 465.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo