Title:
|
On $\mu $-singular and $\mu $-extending modules (English) |
Author:
|
Talebi, Yahya |
Author:
|
Hamzekolaee, Ali Reza Moniri |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
183-196 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $M$ be a module and $\mu $ be a class of modules in $\operatorname{Mod}-R$ which is closed under isomorphisms and submodules. As a generalization of essential submodules Özcan in [8] defines a $\mu $-essential submodule provided it has a non-zero intersection with any non-zero submodule in $\mu $. We define and investigate $\mu $-singular modules. We also introduce $\mu $-extending and weakly $\mu $-extending modules and mainly study weakly $\mu $-extending modules. We give some characterizations of $\mu $-co-H-rings by weakly $\mu $-extending modules. Let $R$ be a right non-$\mu $-singular ring such that all injective modules are non-$\mu $-singular, then $R$ is right $\mu $-co-H-ring if and only if $R$ is a QF-ring. (English) |
Keyword:
|
$\mu $-essential submodule |
Keyword:
|
$\mu $-singular module |
Keyword:
|
$\mu $-extending module |
Keyword:
|
weakly $\mu $-extending module |
MSC:
|
16D10 |
MSC:
|
16D70 |
MSC:
|
16D99 |
MSC:
|
16S90 |
idMR:
|
MR2995871 |
DOI:
|
10.5817/AM2012-3-183 |
. |
Date available:
|
2012-10-03T14:49:47Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142988 |
. |
Reference:
|
[1] Chatters, A. W., Khuri, S. M.: Endomorphism rings of modules over nonsingular CS rings.J. London Math. Soc. 21 (2) (1980), 434–444. MR 0577719, 10.1112/jlms/s2-21.3.434 |
Reference:
|
[2] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman, London, 1994. |
Reference:
|
[3] Faith, C.: Algebra II: Ring Theory.Springer–Verlag Berlin–Heidelberg–New York, 1976. MR 0427349 |
Reference:
|
[4] Goodearl, K. R.: Ring Theory.Marcel Dekker, New York – Basel, 1976. MR 0429962 |
Reference:
|
[5] Mohamed, S. H., Müller, B. J.: Continuous and Discrete Modules.London Math. Soc. 147 (1990). MR 1084376 |
Reference:
|
[6] Oshiro, K.: Lifting modules, extending modules and their applications to QF-rings.Hokkaido Math. J. 13 (1984), 310–338. MR 0764267 |
Reference:
|
[7] Özcan, A. Ç.: On GCO–modules and M–small modules.Comm. Fac. Sci. Univ. Ankara Ser. A1 51 (2) (2002), 25–36. Zbl 1038.16005, MR 1981050 |
Reference:
|
[8] Özcan, A. Ç.: On $\mu $–essential and $\mu $–$M$–singular modules.Proceedings of the Fifth China–Japan–Korea Conference, Tokyo, Japan, 2007, pp. 272–283. MR 2513224 |
Reference:
|
[9] Özcan, A. Ç.: The torsion theory cogenerated by $\delta $–M–small modules and GCO–modules.Comm. Algebra 35 (2007), 623–633. Zbl 1117.16020, MR 2294622, 10.1080/00927870601074871 |
Reference:
|
[10] Talebi, Y., Vanaja, N.: The torsion theory cogenerated by M–small modules.Comm. Algebra 30 (3) (2002), 1449–1460. Zbl 1005.16029, MR 1892609, 10.1080/00927870209342390 |
. |