Previous |  Up |  Next

Article

Title: A characterization of isometries between Riemannian manifolds by using development along geodesic triangles (English)
Author: Kokkonen, Petri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 3
Year: 2012
Pages: 207-231
Summary lang: English
.
Category: math
.
Summary: In this paper we characterize the existence of Riemannian covering maps from a complete simply connected Riemannian manifold $(M,g)$ onto a complete Riemannian manifold $(\hat{M},\hat{g})$ in terms of developing geodesic triangles of $M$ onto $\hat{M}$. More precisely, we show that if $A_0\colon T|_{x_0} M\rightarrow T|_{\hat{x}_0}\hat{M}$ is some isometric map between the tangent spaces and if for any two geodesic triangles $\gamma $, $\omega $ of $M$ based at $x_0$ the development through $A_0$ of the composite path $\gamma \cdot \omega $ onto $\hat{M}$ results in a closed path based at $\hat{x}_0$, then there exists a Riemannian covering map $f\colon M\rightarrow \hat{M}$ whose differential at $x_0$ is precisely $A_0$. The converse of this result is also true. (English)
Keyword: Cartan-Ambrose-Hicks theorem
Keyword: development
Keyword: linear and affine connections
Keyword: rolling of manifolds
MSC: 53B05
MSC: 53B21
MSC: 53C05
idMR: MR2995873
DOI: 10.5817/AM2012-3-207
.
Date available: 2012-10-03T15:04:30Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142990
.
Reference: [1] Alouges, F., Y., Chitour, Long, R.: A motion planning algorithm for the rolling–body problem.IEEE Trans. on Robotics (2010). 10.1109/TRO.2010.2053733
Reference: [2] Blumenthal, R., Hebda, J.: The generalized Cartan-Ambrose-Hicks Theorem.Geom. Dedicata 29 (2) (1989), 163–175. MR 0988266, 10.1007/BF00182117
Reference: [3] Cheeger, J., Ebin, D. G.: Comparison theorems in Riemannian geometry.North-Holland Math. Library 9 (1975). MR 0458335
Reference: [4] Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces.Forum Math. 15 (2003), 727–758. MR 2010032
Reference: [5] Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability.preprint, arXiv:1011.2925v2 [math.DG], 2011.
Reference: [6] Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling.preprint, arXiv:1111.0752v1 [math.DG], 2011.
Reference: [7] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation to the rolling manifolds problem.preprint, arXiv:1008.1856v1 [math.DG], 2010.
Reference: [8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. 1, Wiley–Interscience, 1996.
Reference: [9] Lee, J.: Introduction to smooth manifolds.Graduate Texts in Mathematics, vol. 218, Springer–Verlag, New York, 2003. MR 1930091, 10.1007/978-0-387-21752-9
Reference: [10] Pawel, K., Reckziegel, H.: Affine Submanifolds and the Theorem of Cartan–Ambrose–Hicks.Kodai Math. J. 25 (3) (2002), 341–356. Zbl 1065.53021, MR 1942783, 10.2996/kmj/1071674466
Reference: [11] Robbin, J. W., Salamon, D. A.: Introduction to Differential Geometry.ETH, Lecture Notes, preliminary version, January 2011, http://www.math.ethz.ch/~salamon/PREPRINTS/diffgeo2011.pdf.
Reference: [12] Sakai, T.: Riemannian Geometry.Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996. MR 1390760
Reference: [13] Sharpe, R. W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program.Graduate Texts in Mathematics, vol. 166, Springer–Verlag, New York, 1997. MR 1453120
.

Files

Files Size Format View
ArchMathRetro_048-2012-3_5.pdf 649.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo