Title:
|
A characterization of isometries between Riemannian manifolds by using development along geodesic triangles (English) |
Author:
|
Kokkonen, Petri |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
207-231 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we characterize the existence of Riemannian covering maps from a complete simply connected Riemannian manifold $(M,g)$ onto a complete Riemannian manifold $(\hat{M},\hat{g})$ in terms of developing geodesic triangles of $M$ onto $\hat{M}$. More precisely, we show that if $A_0\colon T|_{x_0} M\rightarrow T|_{\hat{x}_0}\hat{M}$ is some isometric map between the tangent spaces and if for any two geodesic triangles $\gamma $, $\omega $ of $M$ based at $x_0$ the development through $A_0$ of the composite path $\gamma \cdot \omega $ onto $\hat{M}$ results in a closed path based at $\hat{x}_0$, then there exists a Riemannian covering map $f\colon M\rightarrow \hat{M}$ whose differential at $x_0$ is precisely $A_0$. The converse of this result is also true. (English) |
Keyword:
|
Cartan-Ambrose-Hicks theorem |
Keyword:
|
development |
Keyword:
|
linear and affine connections |
Keyword:
|
rolling of manifolds |
MSC:
|
53B05 |
MSC:
|
53B21 |
MSC:
|
53C05 |
idMR:
|
MR2995873 |
DOI:
|
10.5817/AM2012-3-207 |
. |
Date available:
|
2012-10-03T15:04:30Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142990 |
. |
Reference:
|
[1] Alouges, F., Y., Chitour, Long, R.: A motion planning algorithm for the rolling–body problem.IEEE Trans. on Robotics (2010). 10.1109/TRO.2010.2053733 |
Reference:
|
[2] Blumenthal, R., Hebda, J.: The generalized Cartan-Ambrose-Hicks Theorem.Geom. Dedicata 29 (2) (1989), 163–175. MR 0988266, 10.1007/BF00182117 |
Reference:
|
[3] Cheeger, J., Ebin, D. G.: Comparison theorems in Riemannian geometry.North-Holland Math. Library 9 (1975). MR 0458335 |
Reference:
|
[4] Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces.Forum Math. 15 (2003), 727–758. MR 2010032 |
Reference:
|
[5] Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability.preprint, arXiv:1011.2925v2 [math.DG], 2011. |
Reference:
|
[6] Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling.preprint, arXiv:1111.0752v1 [math.DG], 2011. |
Reference:
|
[7] Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation to the rolling manifolds problem.preprint, arXiv:1008.1856v1 [math.DG], 2010. |
Reference:
|
[8] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. 1, Wiley–Interscience, 1996. |
Reference:
|
[9] Lee, J.: Introduction to smooth manifolds.Graduate Texts in Mathematics, vol. 218, Springer–Verlag, New York, 2003. MR 1930091, 10.1007/978-0-387-21752-9 |
Reference:
|
[10] Pawel, K., Reckziegel, H.: Affine Submanifolds and the Theorem of Cartan–Ambrose–Hicks.Kodai Math. J. 25 (3) (2002), 341–356. Zbl 1065.53021, MR 1942783, 10.2996/kmj/1071674466 |
Reference:
|
[11] Robbin, J. W., Salamon, D. A.: Introduction to Differential Geometry.ETH, Lecture Notes, preliminary version, January 2011, http://www.math.ethz.ch/~salamon/PREPRINTS/diffgeo2011.pdf. |
Reference:
|
[12] Sakai, T.: Riemannian Geometry.Transl. Math. Monogr., 149, American Mathematical Society, Providence, RI, 1996. MR 1390760 |
Reference:
|
[13] Sharpe, R. W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program.Graduate Texts in Mathematics, vol. 166, Springer–Verlag, New York, 1997. MR 1453120 |
. |