Previous |  Up |  Next

Article

Title: On the geometry of frame bundles (English)
Author: Niedziałomski, Kamil
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 3
Year: 2012
Pages: 197-206
Summary lang: English
.
Category: math
.
Summary: Let $(M,g)$ be a Riemannian manifold, $L(M)$ its frame bundle. We construct new examples of Riemannian metrics, which are obtained from Riemannian metrics on the tangent bundle $TM$. We compute the Levi–Civita connection and curvatures of these metrics. (English)
Keyword: Riemannian manifold
Keyword: frame bundle
Keyword: tangent bundle
Keyword: natural metric
MSC: 53A30
MSC: 53C10
MSC: 53C24
idMR: MR2995872
DOI: 10.5817/AM2012-3-197
.
Date available: 2012-10-03T14:55:14Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/142989
.
Reference: [1] Abbassi, M. T. K., Sarih, M.: On natural metrics on tangent bundles of Riemannian manifolds.Arch. Math. (Brno) 41 (1) (2005), 71–92. Zbl 1114.53015, MR 2142144
Reference: [2] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannian manifolds.Oxford University Press, Oxford, 2003. Zbl 1055.53049, MR 2044031
Reference: [3] Benyounes, M., Loubeau, E., Wood, C. M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger–Gromoll type.Differential Geom. Appl. 25 (3) (2007), 322–334. Zbl 1128.53037, MR 2330461, 10.1016/j.difgeo.2006.11.010
Reference: [4] Benyounes, M., Loubeau, E., Wood, C. M.: The geometry of generalised Cheeger-Gromoll metrics.Tokyo J. Math. 32 (2) (2009), 287–312. Zbl 1200.53025, MR 2589947, 10.3836/tjm/1264170234
Reference: [5] Cordero, L. A., de Leon, M.: Lifts of tensor fields to the frame bundle.Rend. Circ. Mat. Palermo (2) 32 (2) (1983), 236–271. MR 0729099, 10.1007/BF02844834
Reference: [6] Cordero, L. A., de Leon, M.: On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold.J. Math. Pures Appl. (9) 65 (1) (1986), 81–91. MR 0844241
Reference: [7] Dombrowski, P.: On the geometry of the tangent bundle.J. Reine Angew. Math. 210 (1962), 73–88. Zbl 0105.16002, MR 0141050
Reference: [8] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles. A classification.Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. MR 0974641
Reference: [9] Kowalski, O., Sekizawa, M.: On curvatures of linear frame bundles with naturally lifted metrics.Rend. Sem. Mat. Univ. Politec. Torino 63 (3) (2005), 283–295. Zbl 1141.53020, MR 2202049
Reference: [10] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles.Math. Nachr. 281 (2008), no. 12, 1799–1809 281 (12) (2008), 1799–1809. Zbl 1158.53015, MR 2473330, 10.1002/mana.200610715
Reference: [11] Kowalski, O., Sekizawa, M.: On the geometry of orthonormal frame bundles. II.Ann. Global Anal. Geom. 33 (4) (2008), 357–371. Zbl 1141.53023, MR 2395192, 10.1007/s10455-007-9091-7
Reference: [12] Mok, K. P.: On the differential geometry of frame bundles of Riemannian manifolds.J. Reine Angew. Math. 302 (1978), 16–31. Zbl 0378.53016, MR 0511689
.

Files

Files Size Format View
ArchMathRetro_048-2012-3_4.pdf 426.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo