Previous |  Up |  Next

Article

Title: On the intersection of two distinct $k$-generalized Fibonacci sequences (English)
Author: Marques, Diego
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 137
Issue: 4
Year: 2012
Pages: 403-413
Summary lang: English
.
Category: math
.
Summary: Let $k\geq 2$ and define $F^{(k)}:=(F_n^{(k)})_{n\geq 0}$, the $k$-generalized Fibonacci sequence whose terms satisfy the recurrence relation $F_n^{(k)}=F_{n-1}^{(k)}+F_{n-2}^{(k)}+\cdots + F_{n-k}^{(k)}$, with initial conditions $0,0,\dots ,0,1$ ($k$ terms) and such that the first nonzero term is $F_1^{(k)}=1$. The sequences $F:=F^{(2)}$ and $T:=F^{(3)}$ are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation $F_n^{(k)}=F_m^{(\ell )}$. In this note, we use transcendental tools to provide a general method for finding the intersections $F^{(k)}\cap F^{(m)}$ which gives evidence supporting the Noe-Post conjecture. In particular, we prove that $F\cap T=\{0,1,2,13\}$. (English)
Keyword: $k$-generalized Fibonacci numbers
Keyword: linear forms in logarithms
Keyword: reduction method
MSC: 11B39
MSC: 11D61
MSC: 11J86
idZBL: Zbl 1258.11026
idMR: MR3058272
DOI: 10.21136/MB.2012.142996
.
Date available: 2012-11-10T20:29:08Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/142996
.
Reference: [1] Agronomof, M.: Sur une suite récurrente.Mathesis 4 (1914), 125-126 French.
Reference: [2] Alekseyev, M. A.: On the intersections of Fibonacci, Pell, and Lucas numbers.Integers 11 (2011), 239-259. Zbl 1228.11018, MR 2988061, 10.1515/integ.2011.021
Reference: [3] Back, G., Caragiu, M.: The greatest prime factor and recurrent sequences.Fibonacci Q. 48 (2010), 358-362. Zbl 1221.11032, MR 2766785
Reference: [4] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I: Fibonacci and Lucas perfect powers.Ann. Math. 163 (2006), 969-1018. Zbl 1113.11021, MR 2215137, 10.4007/annals.2006.163.969
Reference: [5] Carroll, D., Jacobson, E. T., Somer, L.: Distribution of two-term recurrence sequences mod $p^e$.Fibonacci Q. 32 (1994), 260-265. MR 1285757
Reference: [6] Dujella, A., Pethö, A.: A generalization of a theorem of Baker and Davenport.Q. J. Math., Oxf. II Ser. 49 (1998), 291-306. Zbl 0911.11018, MR 1645552
Reference: [7] Dresden, G. P.: A simplified Binet formula for $k$-generalized Fibonacci numbers.Preprint, arXiv:0905.0304v1.
Reference: [8] Erdös, P., Selfridge, J. L.: The product of consecutive integers is never a power.Illinois J. Math. 19 (1975), 292-301. Zbl 0295.10017, MR 0376517, 10.1215/ijm/1256050816
Reference: [9] Feinberg, M.: Fibonacci-Tribonacci.Fibonacci Q. 1 (1963), 71-74.
Reference: [10] Ferguson, D. E.: An expression for generalized Fibonacci numbers.Fibonacci Q. 4 (1966), 270-273. Zbl 0139.26703, MR 0207622
Reference: [11] Flores, I.: Direct calculation of $k$-generalized Fibonacci numbers.Fibonacci Q. 5 (1967), 259-266. Zbl 0163.03703, MR 0222016
Reference: [12] Gabai, H.: Generalized Fibonacci $k$-sequences.Fibonacci Q. 8 (1970), 31-38. Zbl 0211.07301, MR 0263734
Reference: [13] Jacobson, E. T.: Distribution of the Fibonacci numbers mod $2^k$.Fibonacci Q. 30 (1992), 211-215. MR 1175305
Reference: [14] Kalman, D.: Generalized Fibonacci numbers by matrix methods.Fibonacci Q. 20 (1982), 73-76. Zbl 0472.10016, MR 0660765
Reference: [15] Kessler, D., Schiff, J.: A combinatoric proof and generalization of Ferguson's formula for $k$-generalized Fibonacci numbers.Fibonacci Q. 42 (2004), 266-273. Zbl 1076.11008, MR 2093882
Reference: [16] Klaška, J.: Tribonacci modulo $p^t$.Math. Bohem. 133 (2008), 267-288. MR 2494781
Reference: [17] Klaška, J.: Tribonacci modulo $2^t$ and $11^t$.Math. Bohem. 133 (2008), 377-387. MR 2472486
Reference: [18] Klaška, J.: A search for Tribonacci-Wieferich primes.Acta Math. Univ. Ostrav. 16 (2008), 15-20. Zbl 1203.11020, MR 2498633
Reference: [19] Klaška, J.: On Tribonacci-Wieferich primes.Fibonacci Q. 46/47 (2008/09), 290-297. MR 2589607
Reference: [20] Klaška, J.: Tribonacci partition formulas modulo $m$.Acta Math. Sin. (Engl. Ser.) 26 (2010), 465-476. Zbl 1238.11016, MR 2591606, 10.1007/s10114-010-8433-8
Reference: [21] Klaška, J., Skula, L.: The cubic character of the Tribonacci roots.Fibonacci Q. 48 (2010), 21-28. Zbl 1219.11030, MR 2663415
Reference: [22] Klaška, J., Skula, L.: Periods of the Tribonacci sequence modulo a prime $p\equiv 1 \pmod 3$.Fibonacci Q. 48 (2010), 228-235. Zbl 1217.11020, MR 2722219
Reference: [23] Klaška, J., Skula, L.: A note on the cubic characters of Tribonacci roots.Fibonacci Q. 48 (2010), 324-326. Zbl 1220.11020, MR 2766780
Reference: [24] Lin, P. Y.: De Moivre-type identities for the Tribonacci numbers.Fibonacci Q. 26 (1988), 131-134. Zbl 0641.10006, MR 0938586
Reference: [25] Luca, F.: Fibonacci and Lucas numbers with only one distinct digit.Port. Math. 57 (2000), 243-254. Zbl 0958.11007, MR 1759818
Reference: [26] Luca, F.: Products of factorials in binary recurrence sequences.Rocky Mountain J. Math. 29 (1999), 1387-1411. Zbl 0978.11010, MR 1743376, 10.1216/rmjm/1181070412
Reference: [27] Luca, F., Marques, D.: Perfect powers in the summatory function of the power tower.J. Théor. Nombres Bordx. 22 (2010), 703-718. Zbl 1231.11040, MR 2769339, 10.5802/jtnb.740
Reference: [28] Marques, D., Togbé, A.: Perfect powers among $C$-nomial coefficients.C. R. Acad. Sci. Paris I 348 (2010), 717-720. MR 2671147, 10.1016/j.crma.2010.06.006
Reference: [29] Marques, D., Togbé, A.: On terms of linear recurrence sequences with only one distinct block of digits.Colloq. Math. 124 (2011), 145-155. Zbl 1246.11036, MR 2842943, 10.4064/cm124-2-1
Reference: [30] Matveev, E. M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II.Izv. Math. 64 1217-1269 (2000), translation from Izv. Ross. Akad. Nauk, Ser. Mat. 64 (2000), 125-180 (2000), 1217-1269. Zbl 1013.11043, MR 1817252, 10.1070/IM2000v064n06ABEH000314
Reference: [31] Mignotte, M.: Intersection des images de certaines suites récurrentes linéaires.Theor. Comput. Sci. 7 (1978), 117-121 French. Zbl 0393.10009, MR 0498356, 10.1016/0304-3975(78)90043-9
Reference: [32] Noe, T. D., Post, J. V.: Primes in Fibonacci $n$-step and Lucas $n$-step sequences.J. Integer Seq. 8 (2005). Zbl 1101.11008, MR 2165333
Reference: [33] Pethö, A.: Fifteen problems in number theory.Acta Univ. Sapientiae Math. 2 (2010), 72-83. Zbl 1201.11012, MR 2643936
Reference: [34] Schlickewei, H. P., Schmidt, W. M.: Linear equations in members of recurrence sequences.Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 20 (1993), 219-246. Zbl 0803.11010, MR 1233637
Reference: [35] Schlickewei, H. P., Schmidt, W. M.: The intersection of recurrence sequences.Acta Arith. 72 (1995), 1-44. Zbl 0851.11007, MR 1346803, 10.4064/aa-72-1-1-44
Reference: [36] Spickerman, W. R.: Binet's formula for the Tribonacci sequence.Fibonacci Q. 20 (1982), 118-120. Zbl 0486.10011, MR 0673292
Reference: [37] Stein, S. K.: The intersection of Fibonacci sequences.Michigan Math. J. 9 (1962), 399-402. Zbl 0271.10008, MR 0154844, 10.1307/mmj/1028998776
Reference: [38] Waddill, E. M.: Some properties of a generalized Fibonacci sequence modulo $m$.Fibonacci Q. 16 (1978), 344-353. Zbl 0394.10007, MR 0514322
Reference: [39] Wolfram, D. A.: Solving generalized Fibonacci recurrences.Fibonacci Q. 36 (1998), 129-145. Zbl 0911.11014, MR 1622060
.

Files

Files Size Format View
MathBohem_137-2012-4_4.pdf 264.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo