Title:
|
Mean-value theorem for vector-valued functions (English) |
Author:
|
Matkowski, Janusz |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
137 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
415-423 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For a differentiable function ${\bf f}\colon I\rightarrow \mathbb {R}^{k},$ where $I$ is a real interval and $k\in \mathbb {N}$, a counterpart of the Lagrange mean-value theorem is presented. Necessary and sufficient conditions for the existence of a mean $M\colon I^{2}\rightarrow I$ such that$$ {\bf f}(x)-{\bf f}( y) =( x-y) {\bf f}'( M(x,y)) ,\quad x,y\in I, $$ are given. Similar considerations for a theorem accompanying the Lagrange mean-value theorem are presented. (English) |
Keyword:
|
Lagrange mean-value theorem |
Keyword:
|
mean |
Keyword:
|
Darboux property of derivative |
Keyword:
|
vector-valued function |
MSC:
|
26A24 |
MSC:
|
26E60 |
idZBL:
|
Zbl 1274.26009 |
idMR:
|
MR3058273 |
DOI:
|
10.21136/MB.2012.142997 |
. |
Date available:
|
2012-11-10T20:29:44Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/142997 |
. |
Reference:
|
[1] Berrone, L. R., Moro, J.: Lagrangian means.Aequationes Math. 55 (1998), 217-226. Zbl 0903.39006, MR 1615392, 10.1007/s000100050031 |
Reference:
|
[2] Matkowski, J.: Mean value property and associated functional equation.Aequationes Math. 58 (1999), 46-59. MR 1714318, 10.1007/s000100050006 |
Reference:
|
[3] Matkowski, J.: A mean-value theorem and its applications.J. Math. Anal. Appl. 373 (2011), 227-234. Zbl 1206.26032, MR 2684472, 10.1016/j.jmaa.2010.06.057 |
. |