Previous |  Up |  Next

Article

Title: Initial boundary value problem for generalized Zakharov equations (English)
Author: You, Shujun
Author: Guo, Boling
Author: Ning, Xiaoqi
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 581-599
Summary lang: English
.
Category: math
.
Summary: This paper considers the existence and uniqueness of the solution to the initial boundary value problem for a class of generalized Zakharov equations in $(2+1)$ dimensions, and proves the global existence of the solution to the problem by a priori integral estimates and the Galerkin method. (English)
Keyword: global solutions
Keyword: modified Zakharov equations
Keyword: Galerkin method
MSC: 35A01
MSC: 35A02
MSC: 35B65
MSC: 35L70
MSC: 35M33
MSC: 35Q40
MSC: 35Q55
MSC: 76X05
idZBL: Zbl 1274.35305
idMR: MR3010238
DOI: 10.1007/s10492-012-0035-6
.
Date available: 2012-11-10T20:40:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143004
.
Reference: [1] Garcia, L. G., Haas, F., Oliveira, L. P. L. de, Goedert, J.: Modified Zakharov equations for plasmas with a quantum correction.Phys. Plasmas 12 (2005). 10.1063/1.1819935
Reference: [2] Guo, B., Zhang, J., Pu, X.: On the existence and uniqueness of smooth solution for a generalized Zakharov equation.J. Math. Anal. Appl. 365 (2010), 238-253. Zbl 1185.35275, MR 2585095, 10.1016/j.jmaa.2009.10.045
Reference: [3] Holmer, J.: Local ill-posedness of the 1D Zakharov system.Electron. J. Differ. Equ. 24 (2007), 1-24. Zbl 1115.35124, MR 2299578
Reference: [4] Linares, F., Matheus, C.: Well-posedness for the 1D Zakharov-Rubenchik system.Adv. Differ. Equ. 14 (2009), 261-288. Zbl 1165.35448, MR 2493563
Reference: [5] Linares, F., Saut, J.-C.: The Cauchy problem for the 3D Zakharov-Kuznetsov equation.Discrete Cont. Dyn. Syst. 24 (2009), 547-565. Zbl 1170.35086, MR 2486590, 10.3934/dcds.2009.24.547
Reference: [6] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Dunod/Gauthier-Villars Paris/Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [7] Masmoudi, N., Nakanishi, K.: From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation.J. Hyperbolic Differ. Equ. 2 (2005), 975-1008. Zbl 1089.35070, MR 2195989, 10.1142/S0219891605000683
Reference: [8] Masmoudi, N., Nakanishi, K.: Energy convergence for singular limits of Zakharov type systems.Invent. Math. 172 (2008), 535-583. Zbl 1143.35090, MR 2393080, 10.1007/s00222-008-0110-5
Reference: [9] Pecher, H.: An improved local well-posedness result for the one-dimensional Zakharov system.J. Math. Anal. Appl. 342 (2008), 1440-1454. Zbl 1140.35307, MR 2445287, 10.1016/j.jmaa.2008.01.035
Reference: [10] You, S.-J.: The posedness of the periodic initial value problem for generalized Zakharov equations.Nonlinear Anal., Theory Methods Appl. 71 (2009), 3571-3584. Zbl 1183.35247, MR 2532737, 10.1016/j.na.2009.01.234
Reference: [11] Zakharov, V. E.: Collapse of Langmuir waves.Sov. Phys. JETP 35 (1972), 908-914.
.

Files

Files Size Format View
AplMat_57-2012-6_3.pdf 285.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo