Title:
|
Existence of positive periodic solutions of an SEIR model with periodic coefficients (English) |
Author:
|
Zhang, Tailei |
Author:
|
Liu, Junli |
Author:
|
Teng, Zhidong |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
57 |
Issue:
|
6 |
Year:
|
2012 |
Pages:
|
601-616 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included. (English) |
Keyword:
|
epidemic model |
Keyword:
|
Fredholm mapping |
Keyword:
|
coincidence degree |
MSC:
|
34C25 |
MSC:
|
34C60 |
MSC:
|
47N20 |
MSC:
|
54H25 |
MSC:
|
92D30 |
idZBL:
|
Zbl 1274.34150 |
idMR:
|
MR3010239 |
DOI:
|
10.1007/s10492-012-0036-5 |
. |
Date available:
|
2012-11-10T20:42:29Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143005 |
. |
Reference:
|
[1] Al-Ajam, M. R., Bizri, A. R., Mokhbat, J., Weedon, J., Lutwick, L.: Mucormycosis in the Eastern Mediterranean: a seasonal disease.Epidemiol. Infect. 134 (2006), 341-346. 10.1017/S0950268805004930 |
Reference:
|
[2] Anderson, R. M., May, R. M.: Population biology of infectious diseases, Part 1.Nature 280 (1979), 361. 10.1038/280361a0 |
Reference:
|
[3] Anderson, R. M., May, R. M.: Infectious Diseases of Humans, Dynamics and Control.Oxford University Oxford (1991). |
Reference:
|
[4] Arenas, A. J., Gonzalez, G., Jódar, L.: Existence of periodic solutions in a model of respiratory syncytial virus RSV.J. Math. Anal. Appl. 344 (2008), 969-980. Zbl 1137.92318, MR 2426325, 10.1016/j.jmaa.2008.03.049 |
Reference:
|
[5] Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations.J. Math. Biol. 28 (1990), 365-382. MR 1057044, 10.1007/BF00178324 |
Reference:
|
[6] Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation.John Wiley & Sons Chichester (2000). MR 1882991 |
Reference:
|
[7] Driessche, P. van den, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 180 (2002), 29-48. MR 1950747, 10.1016/S0025-5564(02)00108-6 |
Reference:
|
[8] Earn, D. J. D., Dushoff, J., Levin, S. A.: Ecology and evolution of the flu.Trends in Ecology and Evolution 17 (2002), 334-340. |
Reference:
|
[9] Fan, M., Wang, K.: Periodicity in a delayed ratio-dependent predator-prey system.J. Math. Anal. Appl. 262 (2001), 179-190. Zbl 0994.34058, MR 1857221, 10.1006/jmaa.2001.7555 |
Reference:
|
[10] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Springer Berlin (1977). Zbl 0339.47031, MR 0637067 |
Reference:
|
[11] Hale, J. K.: Ordinary Differential Equations.Wiley-Interscience New York (1969). Zbl 0186.40901, MR 0419901 |
Reference:
|
[12] Herzog, G., Redheffer, R.: Nonautonomous SEIRS and Thron models for epidemiology and cell biology.Nonlinear Anal., Real World Appl. 5 (2004), 33-44. Zbl 1067.92053, MR 2004085 |
Reference:
|
[13] Hethcote, H. W.: The mathematics of infectious diseases.SIAM Review 42 (2000), 599-653. Zbl 0993.92033, MR 1814049, 10.1137/S0036144500371907 |
Reference:
|
[14] Jódar, L., Villanueva, R. J., Arenas, A.: Modeling the spread of seasonal epidemiological diseases: Theory and applications.Math. Comput. Modelling 48 (2008), 548-557. Zbl 1145.92336, MR 2431484, 10.1016/j.mcm.2007.08.017 |
Reference:
|
[15] Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka-Volterra equations and Systems.J. Math. Anal. Appl. 255 (2001), 260-280. Zbl 1024.34062, MR 1813821, 10.1006/jmaa.2000.7248 |
Reference:
|
[16] Li, M. Y., Muldowney, J. S.: Global stability for the SEIR model in epidemiology.Math. Biosci. 125 (1995), 155-164. Zbl 0821.92022, MR 1315259, 10.1016/0025-5564(95)92756-5 |
Reference:
|
[17] London, W., Yorke, J. A.: Recurrent outbreaks of measles, chickenpox and mumps. 1. Seasonal variation in contact rates.Am. J. Epidemiol. 98 (1973), 453-468. 10.1093/oxfordjournals.aje.a121575 |
Reference:
|
[18] Ma, J., Ma, Z.: Epidemic threshold conditions for seasonally forced SEIR models.Math. Biosci. Eng. 3 (2006), 161-172. Zbl 1089.92048, MR 2192132, 10.3934/mbe.2006.3.161 |
Reference:
|
[19] Nuño, M., Feng, Z., Martcheva, M., Carlos, C. C.: Dynamics of two-strain influenza with isolation and partial cross-immunity.SIAM J. Appl. Math. 65 (2005), 964-982. MR 2136038, 10.1137/S003613990343882X |
Reference:
|
[20] Teng, Z.: On the periodic solutions of periodic multi-species competitive systems with delays.Appl. Math. Comput. 127 (2002), 235-247. Zbl 1035.34078, MR 1883850, 10.1016/S0096-3003(00)00171-5 |
Reference:
|
[21] Teng, Z., Chen, L.: Permanence and extinction of periodic predator-prey systems in a patchy environment with delay.Nonlinear Anal., Real World Appl. 4 (2003), 335-364. Zbl 1018.92033, MR 1942689 |
Reference:
|
[22] Weber, A., Weber, M., Milligan, P.: Modeling epidemics caused by respiratory syncytial virus (RSV).Math. Biosci. 172 (2001), 95-113. Zbl 0988.92025, MR 1853471, 10.1016/S0025-5564(01)00066-9 |
Reference:
|
[23] Zhang, X., Chen, L.: The periodic solution of a class of epidemic models.Comput. Math. Appl. 38 (1999), 61-71. Zbl 0939.92031, MR 1703408, 10.1016/S0898-1221(99)00206-0 |
Reference:
|
[24] Zhang, T., Liu, J., Teng, Z.: Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure.Nonlinear Anal., Real World Appl. 11 (2010), 293-306. Zbl 1195.34130, MR 2570549 |
Reference:
|
[25] Zhang, J., Ma, Z.: Global dynamics of an SEIR epidemic model with saturating contact rate.Math. Biosci. 185 (2003), 15-32. Zbl 1021.92040, MR 2003259, 10.1016/S0025-5564(03)00087-7 |
Reference:
|
[26] Zhang, T., Teng, Z.: On a nonautonomous SEIRS model in epidemiology.Bull. Math. Biol. 69 (2007), 2537-2559. Zbl 1245.34040, MR 2353845, 10.1007/s11538-007-9231-z |
. |