Previous |  Up |  Next

Article

Title: Existence of positive periodic solutions of an SEIR model with periodic coefficients (English)
Author: Zhang, Tailei
Author: Liu, Junli
Author: Teng, Zhidong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 57
Issue: 6
Year: 2012
Pages: 601-616
Summary lang: English
.
Category: math
.
Summary: An SEIR model with periodic coefficients in epidemiology is considered. The global existence of periodic solutions with strictly positive components for this model is established by using the method of coincidence degree. Furthermore, a sufficient condition for the global stability of this model is obtained. An example based on the transmission of respiratory syncytial virus (RSV) is included. (English)
Keyword: epidemic model
Keyword: Fredholm mapping
Keyword: coincidence degree
MSC: 34C25
MSC: 34C60
MSC: 47N20
MSC: 54H25
MSC: 92D30
idZBL: Zbl 1274.34150
idMR: MR3010239
DOI: 10.1007/s10492-012-0036-5
.
Date available: 2012-11-10T20:42:29Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143005
.
Reference: [1] Al-Ajam, M. R., Bizri, A. R., Mokhbat, J., Weedon, J., Lutwick, L.: Mucormycosis in the Eastern Mediterranean: a seasonal disease.Epidemiol. Infect. 134 (2006), 341-346. 10.1017/S0950268805004930
Reference: [2] Anderson, R. M., May, R. M.: Population biology of infectious diseases, Part 1.Nature 280 (1979), 361. 10.1038/280361a0
Reference: [3] Anderson, R. M., May, R. M.: Infectious Diseases of Humans, Dynamics and Control.Oxford University Oxford (1991).
Reference: [4] Arenas, A. J., Gonzalez, G., Jódar, L.: Existence of periodic solutions in a model of respiratory syncytial virus RSV.J. Math. Anal. Appl. 344 (2008), 969-980. Zbl 1137.92318, MR 2426325, 10.1016/j.jmaa.2008.03.049
Reference: [5] Diekmann, O., Heesterbeek, J. A. P., Metz, J. A. J.: On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations.J. Math. Biol. 28 (1990), 365-382. MR 1057044, 10.1007/BF00178324
Reference: [6] Diekmann, O., Heesterbeek, J. A. P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation.John Wiley & Sons Chichester (2000). MR 1882991
Reference: [7] Driessche, P. van den, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission.Math. Biosci. 180 (2002), 29-48. MR 1950747, 10.1016/S0025-5564(02)00108-6
Reference: [8] Earn, D. J. D., Dushoff, J., Levin, S. A.: Ecology and evolution of the flu.Trends in Ecology and Evolution 17 (2002), 334-340.
Reference: [9] Fan, M., Wang, K.: Periodicity in a delayed ratio-dependent predator-prey system.J. Math. Anal. Appl. 262 (2001), 179-190. Zbl 0994.34058, MR 1857221, 10.1006/jmaa.2001.7555
Reference: [10] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Springer Berlin (1977). Zbl 0339.47031, MR 0637067
Reference: [11] Hale, J. K.: Ordinary Differential Equations.Wiley-Interscience New York (1969). Zbl 0186.40901, MR 0419901
Reference: [12] Herzog, G., Redheffer, R.: Nonautonomous SEIRS and Thron models for epidemiology and cell biology.Nonlinear Anal., Real World Appl. 5 (2004), 33-44. Zbl 1067.92053, MR 2004085
Reference: [13] Hethcote, H. W.: The mathematics of infectious diseases.SIAM Review 42 (2000), 599-653. Zbl 0993.92033, MR 1814049, 10.1137/S0036144500371907
Reference: [14] Jódar, L., Villanueva, R. J., Arenas, A.: Modeling the spread of seasonal epidemiological diseases: Theory and applications.Math. Comput. Modelling 48 (2008), 548-557. Zbl 1145.92336, MR 2431484, 10.1016/j.mcm.2007.08.017
Reference: [15] Li, Y., Kuang, Y.: Periodic solutions of periodic delay Lotka-Volterra equations and Systems.J. Math. Anal. Appl. 255 (2001), 260-280. Zbl 1024.34062, MR 1813821, 10.1006/jmaa.2000.7248
Reference: [16] Li, M. Y., Muldowney, J. S.: Global stability for the SEIR model in epidemiology.Math. Biosci. 125 (1995), 155-164. Zbl 0821.92022, MR 1315259, 10.1016/0025-5564(95)92756-5
Reference: [17] London, W., Yorke, J. A.: Recurrent outbreaks of measles, chickenpox and mumps. 1. Seasonal variation in contact rates.Am. J. Epidemiol. 98 (1973), 453-468. 10.1093/oxfordjournals.aje.a121575
Reference: [18] Ma, J., Ma, Z.: Epidemic threshold conditions for seasonally forced SEIR models.Math. Biosci. Eng. 3 (2006), 161-172. Zbl 1089.92048, MR 2192132, 10.3934/mbe.2006.3.161
Reference: [19] Nuño, M., Feng, Z., Martcheva, M., Carlos, C. C.: Dynamics of two-strain influenza with isolation and partial cross-immunity.SIAM J. Appl. Math. 65 (2005), 964-982. MR 2136038, 10.1137/S003613990343882X
Reference: [20] Teng, Z.: On the periodic solutions of periodic multi-species competitive systems with delays.Appl. Math. Comput. 127 (2002), 235-247. Zbl 1035.34078, MR 1883850, 10.1016/S0096-3003(00)00171-5
Reference: [21] Teng, Z., Chen, L.: Permanence and extinction of periodic predator-prey systems in a patchy environment with delay.Nonlinear Anal., Real World Appl. 4 (2003), 335-364. Zbl 1018.92033, MR 1942689
Reference: [22] Weber, A., Weber, M., Milligan, P.: Modeling epidemics caused by respiratory syncytial virus (RSV).Math. Biosci. 172 (2001), 95-113. Zbl 0988.92025, MR 1853471, 10.1016/S0025-5564(01)00066-9
Reference: [23] Zhang, X., Chen, L.: The periodic solution of a class of epidemic models.Comput. Math. Appl. 38 (1999), 61-71. Zbl 0939.92031, MR 1703408, 10.1016/S0898-1221(99)00206-0
Reference: [24] Zhang, T., Liu, J., Teng, Z.: Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure.Nonlinear Anal., Real World Appl. 11 (2010), 293-306. Zbl 1195.34130, MR 2570549
Reference: [25] Zhang, J., Ma, Z.: Global dynamics of an SEIR epidemic model with saturating contact rate.Math. Biosci. 185 (2003), 15-32. Zbl 1021.92040, MR 2003259, 10.1016/S0025-5564(03)00087-7
Reference: [26] Zhang, T., Teng, Z.: On a nonautonomous SEIRS model in epidemiology.Bull. Math. Biol. 69 (2007), 2537-2559. Zbl 1245.34040, MR 2353845, 10.1007/s11538-007-9231-z
.

Files

Files Size Format View
AplMat_57-2012-6_4.pdf 304.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo