Title:
|
The AP-Denjoy and AP-Henstock integrals revisited (English) |
Author:
|
Skvortsov, Valentin A. |
Author:
|
Sworowski, Piotr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
62 |
Issue:
|
3 |
Year:
|
2012 |
Pages:
|
581-591 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The note is related to a recently published paper J. M. Park, J. J. Oh, C.-G. Park, D. H. Lee: The AP-Denjoy and AP-Henstock integrals. Czech. Math. J. 57 (2007), 689–696, which concerns a descriptive characterization of the approximate Kurzweil-Henstock integral. We bring to attention known results which are stronger than those contained in the aforementioned work. We show that some of them can be formulated in terms of a derivation basis defined by a local system of which the approximate basis is known to be a particular case. We also consider the relation between the $\sigma $-finiteness of variational measure generated by a function and the classical notion of the generalized bounded variation. (English) |
Keyword:
|
approximate Kurzweil-Henstock integral |
Keyword:
|
approximate continuity |
Keyword:
|
local system |
Keyword:
|
variational measure |
MSC:
|
26A39 |
MSC:
|
26A42 |
MSC:
|
26A46 |
idZBL:
|
Zbl 1265.26019 |
idMR:
|
MR2984620 |
DOI:
|
10.1007/s10587-012-0050-5 |
. |
Date available:
|
2012-11-10T20:57:22Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143010 |
. |
Reference:
|
[1] Bongiorno, B., Piazza, L. Di, Skvortsov, V. A.: On dyadic integrals and some other integrals associated with local systems.J. Math. Anal. Appl. 271 (2002), 506-524. Zbl 1010.26006, MR 1923649, 10.1016/S0022-247X(02)00146-4 |
Reference:
|
[2] Bongiorno, D., Piazza, L. Di, Skvortsov, V. A.: Variational measures related to local systems and the Ward property of $\mathcal P$-adic path bases.Czech. Math. J. 56(131) (2006), 559-578. MR 2291756, 10.1007/s10587-006-0037-1 |
Reference:
|
[3] Ene, V.: Real Functions---Current Topics. Lecture Notes in Mathematics, Vol. 1603.Springer Berlin (1995). MR 1369575 |
Reference:
|
[4] Ene, V.: Characterizations of $ VBG \cap\mathcal N$.Real Anal. Exch. 23 (1997), 611-630. MR 1639992, 10.2307/44153985 |
Reference:
|
[5] Ene, V.: Thomson's variational measure.Real Anal. Exch. 24 (1998), 523-565. Zbl 0968.26007, MR 1704732, 10.2307/44152978 |
Reference:
|
[6] Gordon, R. A.: The inversion of approximate and dyadic derivatives using an extension of the Henstock integral.Real Anal. Exch. 16 (1991), 154-168. Zbl 0723.26005, MR 1087481 |
Reference:
|
[7] Park, J. M., Oh, J. J., Kim, J., Lee, H. K.: The equivalence of the {AP}-Henstock and {AP}-Denjoy integrals.J. Chungcheong Math. Soc. 17 (2004), 103-110. |
Reference:
|
[8] Park, J. M., Kim, Y. K., Yoon, J. H.: Some properties of the {AP}-Denjoy integral.Bull. Korean Math. Soc. 42 (2005), 535-541. Zbl 1090.26002, MR 2162209, 10.4134/BKMS.2005.42.3.535 |
Reference:
|
[9] Park, J. M., Oh, J. J., Park, C.-G., Lee, D. H.: The {AP}-Denjoy and {AP}-Henstock integrals.Czech. Math. J. 57(132) (2007), 689-696. Zbl 1174.26308, MR 2337623, 10.1007/s10587-007-0106-0 |
Reference:
|
[10] Pfeffer, W. F.: The Riemann Approach to Integration: Local Geometric Theory. Cambridge Tracts in Mathematics.109 Cambridge (1993). MR 1268404 |
Reference:
|
[11] Saks, S.: Theory of the Integral.G. E. Stechert & Co New York (1937). Zbl 0017.30004 |
Reference:
|
[12] Sworowski, P., Skvortsov, V. A.: Variational measure determined by an approximative differential basis.Mosc. Univ. Math. Bull. 57 (2002), 37-40. MR 1933126 |
Reference:
|
[13] Thomson, B. S.: Derivation bases on the real line.Real Anal. Exch. 8 (1983), 67-207, 278-442. Zbl 0525.26003, 10.2307/44151585 |
Reference:
|
[14] Thomson, B. S.: Real Functions. Lecture Notes in Mathematics.1170 Springer Berlin (1985). MR 0818744 |
Reference:
|
[15] Wang, C., Ding, C. S.: An integral involving Thomson's local systems.Real Anal. Exch. 19 (1994), 248-253. Zbl 0802.26004 |
. |