Previous |  Up |  Next

Article

Title: On almost pseudo-conformally symmetric Ricci-recurrent manifolds with applications to relativity (English)
Author: Chand De, Uday
Author: De, Avik
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 1055-1072
Summary lang: English
.
Category: math
.
Summary: The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field $\rho $ corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field $\rho $ are geodesic. We also study some global properties of such a manifold. Finally, we study almost pseudo-conformally symmetric Ricci-recurrent spacetime. We obtain the Segre' characteristic of such a spacetime. (English)
Keyword: pseudo-conformally symmetric manifold
Keyword: almost pseudo-conformally symmetric manifold
Keyword: Ricci-recurrent manifold
Keyword: Einstein field equations
Keyword: Segre' characteristic
MSC: 53B15
MSC: 53B20
MSC: 53B30
MSC: 53C15
MSC: 53C25
idZBL: Zbl 1274.53049
idMR: MR3010256
DOI: 10.1007/s10587-012-0063-0
.
Date available: 2012-11-10T21:42:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143044
.
Reference: [1] Adati, T., Miyazawa, T.: On a Riemannian space with recurrent conformal curvature.Tensor, N. S. 18 (1967), 348-354. Zbl 0152.39103, MR 0215251
Reference: [2] Boeckx, E., Vanhecke, L., Kowalski, O.: Riemannian Manifolds of Conullity Two.World Scientific Publishing Singapore (1996). Zbl 0904.53006, MR 1462887
Reference: [3] Buchner, K., Roter, W.: On conformally quasi-recurrent metrics I. Some general results and existence questions.Soochow J. Math. 19 (1993), 381-400. Zbl 0804.53021, MR 1249054
Reference: [4] Cartan, E.: Sur une classe remarquable d'espaces de Riemannian.Bull. S. M. F 54 (1926), 214-264 France. MR 1504900
Reference: [5] Chaki, M. C.: On pseudo symmetric manifolds.Ann. Sţiinţ. Univ. ``Al. I. Cuza'' Iaşi 33 (1987), 53-58. Zbl 0634.53012, MR 0925690
Reference: [6] Chaki, M. C., Gupta, B.: On conformally symmetric spaces.Indian J. Math. 5 (1963), 113-122. Zbl 0122.39902, MR 0163255
Reference: [7] De, U. C., Biswas, H. A.: On pseudo conformally symmetric manifolds.Bull. Calcutta Math. Soc. 85 (1993), 479-486. Zbl 0821.53018, MR 1326445
Reference: [8] De, U. C., Gazi, A. K.: On almost pseudo symmetric manifolds.Ann. Univ. Sci. Budap. 51 (2008), 53-68. Zbl 1224.53056, MR 2567494
Reference: [9] De, U. C., Gazi, A. K.: On almost pseudo conformally symmetric manifolds.Demonstr. Math. 42 (2009), 869-886. Zbl 1184.53034, MR 2588986
Reference: [10] De, U. C., Bandyopadhyay, S.: On weakly conformally symmetric spaces.Publ. Math. 57 (2000), 71-78. Zbl 0958.53016, MR 1771672
Reference: [11] Derdzinski, A., Roter, W.: On compact manifolds admitting indefinite metrics with parallel Weyl tensor.J. Geom. Phys. 58 (2008), 1137-1147. Zbl 1154.53049, MR 2451274, 10.1016/j.geomphys.2008.03.011
Reference: [12] Derdzinski, A., Roter, W.: Compact pseudo-Riemannian manifolds with parallel Weyl tensor.Ann. Global Anal. Geom. 37 (2010), 73-90. Zbl 1193.53147, MR 2575471, 10.1007/s10455-009-9173-9
Reference: [13] Derdzinski, A., Roter, W.: Global properties of indefinite metrics with parallel Weyl tensor.Proc. Pure and Applied Differential Geometry, PADGE 2007 Shaker Aachen (2007), 63-72. Zbl 1140.53034, MR 2497674
Reference: [14] Derdzinski, A., Roter, W.: Projectively flat surfaces, null parallel distributions, and conformally symmetric manifolds.Tohoku Math. J. 59 (2007), 566-602. Zbl 1146.53014, MR 2404206, 10.2748/tmj/1199649875
Reference: [15] Derdzinski, A., Roter, W.: The local structure of conformally symmetric manifolds.Bull. Belg. Math. Soc. -- Simon Stevin 16 (2009), 117-128. Zbl 1165.53011, MR 2498963, 10.36045/bbms/1235574196
Reference: [16] Deszcz, R.: On pseudosymmetric spaces.Bull. Soc. Math. Belg. Soc. Sér. A 44 (1992), 1-34. Zbl 0808.53012, MR 1315367
Reference: [17] Eisenhart, L. P.: Riemannian Geometry.Princeton University Press Princeton (1967). Zbl 0174.53303, MR 0035081
Reference: [18] O'Neill, B.: Semi-Riemannian Geometry. With Applications to Relativity.Academic Press New York-London (1983). Zbl 0531.53051, MR 0719023
Reference: [19] Patterson, E. M.: Some theorems on Ricci-recurrent spaces.J. Lond. Math. Soc. 27 (1952), 287-295. Zbl 0048.15604, MR 0048891, 10.1112/jlms/s1-27.3.287
Reference: [20] Petersen, P.: Riemannian Geometry.Springer New York (2006). Zbl 1220.53002, MR 2243772
Reference: [21] Petrov, A. Z.: Einstein Spaces.Pergamon Press Oxford (1969). Zbl 0174.28305, MR 0244912
Reference: [22] Prvanović, M.: Some theorems on conformally quasi-recurrent manifolds.Fak. Univ. u Novom Sadu, Zb. Rad. Prir.-Mat., Ser. Mat. 19 (1989), 21-31. MR 1099989
Reference: [23] Roter, W.: On conformally symmetric Ricci-recurrent spaces.Colloq. Math. 31 (1974), 87-96. Zbl 0292.53014, MR 0372768, 10.4064/cm-31-1-87-96
Reference: [24] Roter, W.: On the existence of conformally recurrent Ricci-recurrent spaces.Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24 (1976), 973-979. MR 0433341
Reference: [25] Roter, W.: Some remarks on infinitesimal projective transformations in recurrent and Ricci-recurrent spaces.Colloq. Math. 15 (1966), 121-127. Zbl 0163.43403, MR 0211359, 10.4064/cm-15-1-121-127
Reference: [26] Schouten, J. A.: Ricci Calculus. An Introduction to Tensor Analysis and Its Geometrical Application. 2nd ed.Springer Berlin (1954). MR 0066025
Reference: [27] Sen, R. N., Chaki, M. C.: On curvature restrictions of a certain kind of conformally-flat Riemannian space of class one.Proc. Natl. Inst. Sci. India, Part A 33 (1967), 100-102. Zbl 0163.43401, MR 0232308
Reference: [28] Suh, Y. J., Kwon, J.-H., Hae, Y. Y.: Conformally symmetric semi-Riemannian manifolds.J. Geom. Phys. 56 (2006), 875-901. MR 2217494, 10.1016/j.geomphys.2005.05.005
Reference: [29] Szabo, Z. I.: Structure theorems on Riemannian spaces satisfying $R(X,Y).R=0$. The local version.J. Differ. Geom. 17 (1982), 531-582. MR 0683165, 10.4310/jdg/1214437486
Reference: [30] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projectively symmetric Riemannian manifolds.Colloq. János Bolyai Math. Soc. 56 (1989), 663-670. MR 1211691
Reference: [31] Walker, A. G.: On Ruse's space of recurrent curvature.Proc. London Math. Soc., II. Sér. 52 (1951), 36-64.
Reference: [32] Watanabe, Y.: Integral inequalities in a compact orientable manifold, Riemannian or Kählerian.Kōdai Math. Semin. Rep. 20 (1968), 264-271. Zbl 0172.23302, MR 0248702, 10.2996/kmj/1138845694
Reference: [33] Yano, K.: Integral Formulas in Riemannian Geometry.Marcel Dekker New York (1970). Zbl 0213.23801, MR 0284950
.

Files

Files Size Format View
CzechMathJ_62-2012-4_13.pdf 285.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo