Previous |  Up |  Next

Article

Title: Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums (English)
Author: Liu, Huaning
Author: Gao, Jing
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 62
Issue: 4
Year: 2012
Pages: 1147-1159
Summary lang: English
.
Category: math
.
Summary: Let $q$, $h$, $a$, $b$ be integers with $q>0$. The classical and the homogeneous Dedekind sums are defined by $$ s(h,q)=\sum _{j=1}^q\Big (\Big (\frac {j}{q}\Big )\Big )\Big (\Big (\frac {hj}{q}\Big )\Big ),\quad s(a,b,q)=\sum _{j=1}^q\Big (\Big (\frac {aj}{q}\Big )\Big )\Big (\Big (\frac {bj}{q}\Big )\Big ), $$ respectively, where $$ ((x))= \begin {cases} x-[x]-\frac {1}{2}, & \text {if $x$ is not an integer};\\ 0, & \text {if $x$ is an integer}. \end {cases} $$ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$ \gathered \sum _{d\mid n}\sum _{r=1}^d s\Big (\frac {n}{d}a+rq,dq\Big )=\sigma (n)s(a,q),\\ \sum _{d\mid n}\sum _{r_1=1}^d\sum _{r_2=1}^d s\Big (\frac {n}{d}a+r_1q,\frac {n}{d}b+r_2q,dq\Big )=n\sigma (n)s(a,b,q), \endgathered $$ where $\sigma (n)=\sum \nolimits _{d\mid n}d$. \endgraf In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given. (English)
Keyword: Dedekind sum
Keyword: Cochrane sum
Keyword: Knopp identity
MSC: 11F20
idZBL: Zbl 1259.11044
idMR: MR3010262
DOI: 10.1007/s10587-012-0069-7
.
Date available: 2012-11-10T21:54:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/143050
.
Reference: [1] Apostol, T. M.: Modular Functions and Dirichlet Series in Number Theory.Springer New York, Heidelberg, Berlin (1976). Zbl 0332.10017, MR 0422157
Reference: [2] Berndt, B. C.: Analytic Eisentein series, theta-functions, and series relations in the spirit of Ramanujan.J. Reine Angew. Math. 303/304 (1978), 332-365. MR 0514690
Reference: [3] Berndt, B. C., Goldberg, L. A.: Analytic properties of arithmetic sums arising in the theory of the classical theta-functions.SIAM J. Math. Anal. 15 (1984), 143-150. Zbl 0537.10006, MR 0728690, 10.1137/0515011
Reference: [4] Goldberg, L. A.: An elementary proof of the Petersson-Knopp theorem on Dedekind sums.J. Number Theory 12 (1980), 541-542. Zbl 0444.10006, MR 0599823, 10.1016/0022-314X(80)90044-X
Reference: [5] Hall, R. R., Huxley, M. N.: Dedekind sums and continued fractions.Acta Arith. 63 (1993), 79-90. Zbl 0785.11027, MR 1201620, 10.4064/aa-63-1-79-90
Reference: [6] Knopp, M. I.: Hecke operators and an identity for the Dedekind sums.J. Number Theory 12 (1980), 2-9. Zbl 0423.10015, MR 0566863, 10.1016/0022-314X(80)90067-0
Reference: [7] Parson, L. A.: Dedekind sums and Hecke operators.Math. Proc. Camb. Philos. Soc. 88 (1980), 11-14. Zbl 0435.10005, MR 0569629, 10.1017/S0305004100057315
Reference: [8] Pettet, M. R., Sitaramachandrarao, R.: Three-term relations for Hardy sums.J. Number Theory 25 (1987), 328-339. Zbl 0604.10003, MR 0880466, 10.1016/0022-314X(87)90036-9
Reference: [9] Rademacher, H., Grosswald, E.: Dedekind Sums.The Carus Mathematical Monographs No. 16 The Mathematical Association of America, Washington, D. C. (1972). Zbl 0251.10020, MR 0357299
Reference: [10] Sitaramachandrarao, R.: Dedekind and Hardy sums.Acta Arith. 48 (1987), 325-340. Zbl 0635.10002, MR 0927374, 10.4064/aa-48-4-325-340
Reference: [11] Zhang, W.: On a Cochrane sum and its hybrid mean value formula.J. Math. Anal. Appl. 267 (2002), 89-96. Zbl 1106.11304, MR 1886818, 10.1006/jmaa.2001.7752
Reference: [12] Zhang, W.: On a Cochrane sum and its hybrid mean value formula. II.J. Math. Anal. Appl. 276 (2002), 446-457. Zbl 1106.11304, MR 1944361, 10.1016/S0022-247X(02)00501-2
Reference: [13] Zhang, W., Liu, H.: A note on the Cochrane sum and its hybrid mean value formula.J. Math. Anal. Appl. 288 (2003), 646-659. Zbl 1046.11056, MR 2020186, 10.1016/j.jmaa.2003.09.056
Reference: [14] Zhang, W., Yi, Y.: On the upper bound estimate of Cochrane sums.Soochow J. Math. 28 (2002), 297-304. Zbl 1016.11038, MR 1926326
Reference: [15] Zheng, Z.: On an identity for Dedekind sums.Acta Math. Sin. 37 (1994), 690-694. Zbl 0842.11017
Reference: [16] Zheng, Z.: The Petersson-Knopp identity for homogeneous Dedekind sums.J. Number Theory 57 (1996), 223-230. Zbl 0847.11021, MR 1382748, 10.1006/jnth.1996.0045
.

Files

Files Size Format View
CzechMathJ_62-2012-4_19.pdf 250.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo