[1] S. M. Ali, S. D. Silvey:
A general class of coefficients of divergence of one distribution from another. J. Roy. Statist. Soc. Ser. B 28 (1966) 131-142.
MR 0196777 |
Zbl 0203.19902
[2] S. Amari, H. Nagaoka:
Methods of Information Geometry. Transl. Math. Monographs 191, Oxford Univ. Press, 2000.
MR 1800071 |
Zbl 1146.62001
[3] S. Amari, A. Cichocki: Information geometry of divergence functions. Bull. Polish Acad. Sci. 58 (2010) 183-194.
[4] O. Barndorff-Nielsen:
Information and Exponential Families in Statistical Theory. Wiley, 1978.
MR 0489333 |
Zbl 0387.62011
[5] H. H. Bauschke, J. M. Borwein:
Legendre functions and the method of random Bregman projections. J. Convex Anal. 4 (1997), 27-67.
MR 1459881 |
Zbl 0894.49019
[7] A. Ben-Tal, A. Charnes:
A dual optimization framework for some problems of information theory and statistics. Problems Control Inform. Theory 8 (1979), 387-401.
MR 0553884 |
Zbl 0437.90078
[10] J. M. Borwein, A. S. Lewis:
Partially-finite programming in $L_1$ and the existence of maximum entropy estimates. SIAM J. Optim. 3 (1993), 248-267.
DOI 10.1137/0803012 |
MR 1215444
[11] J. M. Borwein, A. S. Lewis, D. Noll:
Maximum entropy spectral analysis using derivative information. Part I: Fisher information and convex duality. Math. Oper. Res. 21 (1996), 442-468.
DOI 10.1287/moor.21.2.442 |
MR 1397223
[13] M. Broniatowski, A. Keziou:
Minimization of $\phi$-divergences on sets of signed measures. Studia Sci. Math. Hungar. 43 (2006), 403-442.
MR 2273419 |
Zbl 1121.28004
[14] J. P. Burg: Maximum entropy spectral analysis. Paper presented at 37th Meeting of Soc. Explor. Geophysicists, Oklahoma City 1967.
[15] J. P. Burg: Maximum entropy spectral analysis. Ph.D. Thesis, Dept. Geophysics, Stanford Univ., Stanford 1975.
[16] Y. Censor, S. A. Zenios:
Parallel Optimization. Oxford University Press, New York 1997.
MR 1486040 |
Zbl 0945.90064
[17] N. N. Chentsov:
Statistical Decision Rules and Optimal Inference. Transl. Math. Monographs 53, American Math. Soc., Providence 1982. Russian original: Nauka, Moscow 1972.
MR 0645898 |
Zbl 0484.62008
[18] I. Csiszár:
Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten. Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963), 85-108.
MR 0164374 |
Zbl 0124.08703
[19] I. Csiszár:
Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299-318.
MR 0219345 |
Zbl 0157.25802
[25] I. Csiszár, F. Matúš:
Convex cores of measures on $\mathcal{R}^d$. Studia Sci. Math. Hungar. 38 (2001), 177-190.
MR 1877777
[27] I. Csiszár, F. Matúš: Generalized maximum likelihood estimates for infinite dimensional exponential families. In: Proc. Prague Stochastics'06, Prague 2006, pp. 288-297.
[29] I. Csiszár, F. Matúš: On minimization of entropy functionals under moment constraints. In: Proc. ISIT 2008, Toronto, pp. 2101-2105.
[30] I. Csiszár, F. Matúš: On minimization of multivariate entropy functionals. In: Proc. ITW 2009, Volos, Greece, pp. 96-100.
[31] I. Csiszár, F. Matúš: Minimization of entropy functionals revisited. In: Proc. ISIT 2012, Cambridge, MA, pp. 150-154.
[32] D. Dacunha-Castelle, F. Gamboa:
Maximum d'entropie et problème des moments. Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 567-596.
MR 1080586 |
Zbl 0788.62007
[34] S. Eguchi:
Information geometry and statistical pattern recognition. Sugaku Expositions, Amer. Math. Soc. 19 (2006), 197-216.
MR 2279777
[35] B. A. Frigyik, S. Srivastava, M. R. Gupta:
Functional Bregman divergence and Bayesian estimation of distributions. IEEE Trans. Inform. Theory 54 (2008), 5130-5139.
DOI 10.1109/TIT.2008.929943 |
MR 2589887
[37] E. T. Jaynes:
Information theory and statistical mechanics. Physical Review Ser. II 106 (1957), 620-630.
MR 0087305 |
Zbl 0084.43701
[38] L. Jones, C. Byrne:
General entropy criteria for inverse problems with application to data compression, pattern classification and cluster analysis. IEEE Trans. Inform. Theory 36 (1990), 23-30.
DOI 10.1109/18.50370 |
MR 1043277
[42] C. Léonard:
Minimizers of energy functionals under not very integrable constraints. J. Convex Anal. 10 (2003), 63-68.
MR 1999902
[45] F. Liese, I. Vajda:
Convex Statistical Distances. Teubner Texte zur Mathematik 95, Teubner Verlag, Leipzig 1986.
MR 0926905 |
Zbl 0656.62004
[48] R. T. Rockafellar:
Convex integral functionals and duality. In: Contributions to Nonlinear Functional Analysis (E. H. Zarantonello, ed.), Academic Press, New York 1971, pp. 215-236.
MR 0390870 |
Zbl 0326.49008
[50] R. T. Rockafellar, R. J.-B. Wets:
Variational Analysis. Springer Verlag, Berlin - Heidel\-berg - New York 2004.
MR 1491362 |
Zbl 0888.49001
[52] F. Topsoe:
Information-theoretical optimization techniques. Kybernetika 15 (1979), 8-27.
MR 0529888
[53] I. Vajda:
Theory of Statistical Inference and Information. Kluwer Academic Puplishers, Dordrecht 1989.
Zbl 0711.62002