Previous |  Up |  Next

Article

Title: Triple Constructions of Decomposable MS-Algebras (English)
Author: Badawy, Abd El-Mohsen
Author: Guffová, Daniela
Author: Haviar, Miroslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 51
Issue: 2
Year: 2012
Pages: 53-65
Summary lang: English
.
Category: math
.
Summary: A simple triple construction of principal MS-algebras is given which is parallel to the construction of principal $p$-algebras from principal triples presented by the third author in [Haviar, M.: Construction and affine completeness of principal p-algebras Tatra Mountains Math. 5 (1995), 217–228.]. It is shown that there exists a one-to-one correspondence between principal MS-algebras and principal MS-triples. Further, a triple construction of a class of decomposable MS-algebras that includes the class of principal MS-algebras is given. It is a modification of the quadruple constructions by T. S. Blyth and J. C. Varlet [Blyth, T., Varlet, J.: On a common abstraction of de Morgan algebras and Stone algebras Proc. Roy. Soc. Edinburgh. 94A (1983), 301–308.], [Blyth, T., Varlet, J.: Subvarieties of the class of MS-algebras Proc. Roy. Soc. Edinburgh 95A (1983), 157–169.] and T. Katriňák and K. Mikula [Katriňák, T., Mikula, K.: On a construction of MS-algebras Portugaliae Math. 45 (1988), 157–163.]; instead of Kleene algebras and the filters $L^{\vee }$ used in their quadruples, de Morgan algebras and the filters $D(L)$, respectively, are used in our triples. (English)
Keyword: principal MS-algebra
Keyword: principal MS-triple
Keyword: decomposable MS-algebra
Keyword: decomposable MS-triple
Keyword: de Morgan algebra
Keyword: filter
MSC: 06D05
MSC: 06D30
idZBL: Zbl 06204930
idMR: MR3058873
.
Date available: 2012-11-26T10:17:39Z
Last updated: 2014-03-12
Stable URL: http://hdl.handle.net/10338.dmlcz/143067
.
Reference: [1] Blyth, T., Varlet, J.: On a common abstraction of de Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh. 94A (1983), 301–308. Zbl 0536.06013, MR 0709723
Reference: [2] Blyth, T., Varlet, J.: Subvarieties of the class of MS-algebras. Proc. Roy. Soc. Edinburgh 95A (1983), 157–169. Zbl 0544.06011, MR 0723104
Reference: [3] Blyth, T., Varlet, J.: Sur la construction de certaines MS-algebres. Portugaliae Math. 39 (1980), 489–496. MR 0776258
Reference: [4] Blyth, T., Varlet, J.: Corrigendum sur la construction de certaines MS-algebres. Portugaliae Math. 42 (1983), 469–471. MR 0836125
Reference: [5] Chen, C. C.: Stone lattice I, Construction theorems. Cond. J. Math. 21 (1969), 884–894. MR 0242737, 10.4153/CJM-1969-096-5
Reference: [6] Haviar, M.: On certain construction of MS-algebras.. Portugaliae Math. 51 (1994), 71–83. MR 1281957
Reference: [7] Haviar, M.: Construction and affine completeness of principal p-algebras. Tatra Mountains Math. 5 (1995), 217–228. Zbl 0853.06005, MR 1384810
Reference: [8] Katriňák, T.: A new proof of the construction theorem for Stone algebras. Proc. Amer. Math. Soc. 40 (1973), 75–78. Zbl 0258.06006, MR 0316335, 10.2307/2038636
Reference: [9] Katriňák,T., Mederly, P.: Construction of p-algebras. Algebra Universalis 17 (1983), 288–316. MR 0729938, 10.1007/BF01194538
Reference: [10] Katriňák, T., Mikula, K.: On a construction of MS-algebras. Portugaliae Math. 45 (1988), 157–163. MR 0952534
.

Files

Files Size Format View
ActaOlom_51-2012-2_5.pdf 277.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo