Previous |  Up |  Next

Article

Title: On the inverse variational problem in nonholonomic mechanics (English)
Author: Rossi, Olga
Author: Musilová, Jana
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 1
Year: 2012
Pages: 41-62
Summary lang: English
.
Category: math
.
Summary: The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with the recently found constraint Helmholtz conditions this result completes basic geometric properties of constraint variational systems. A few examples of constraint variational systems are discussed. (English)
Keyword: inverse problem of the calculus of variations
Keyword: Helmholtz conditions
Keyword: nonholonomic constraints
Keyword: the nonholonomic variational principle
Keyword: constraint Euler-Lagrange equations
Keyword: constraint Helmholtz conditions
Keyword: constraint Lagrangian
Keyword: constraint ballistic motion
Keyword: relativistic particle
MSC: 49N45
MSC: 58E30
MSC: 70F25
idZBL: Zbl 06202718
idMR: MR3001631
.
Date available: 2012-11-27T16:30:27Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143080
.
Reference: [1] Bloch, A.M., Mestdag, O.E. Fernandez and T.: Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations.Reports on Math. Phys., 63, 2009, 225-249 MR 2519467, 10.1016/S0034-4877(09)90001-5
Reference: [2] Chetaev, N.G.: On the Gauss principle.Izv. Kazan. Fiz.-Mat. Obsc., 6, 1932–33, 323-326, (in Russian).
Reference: [3] Helmholtz, H.: Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung.J. für die reine u. angewandte Math., 100, 1887, 137-166
Reference: [4] Krupková, O.: Mechanical systems with non-holonomic constraints.J. Math. Phys., 38, 10, 1997, 5098-5126 MR 1471916, 10.1063/1.532196
Reference: [5] Krupková, O.: Recent results in the geometry of constrained systems.Reports on Math. Phys., 49, 2002, 269-278 Zbl 1018.37041, MR 1915806, 10.1016/S0034-4877(02)80025-8
Reference: [6] Krupková, O.: The nonholonomic variational principle.J. Phys. A: Math. Theor., 42, 2009, 185201. Zbl 1198.70008, MR 2591195, 10.1088/1751-8113/42/18/185201
Reference: [7] Krupková, O.: Geometric mechanics on nonholonomic submanifolds.Communications in Mathematics, 18, 1, 2010, 51-77 Zbl 1248.70018, MR 2848506
Reference: [8] Krupková, O., Musilová, J.: The relativistic particle as a mechanical system with non-holonomic constraints.J. Phys. A.: Math. Gen., 34, 2001, 3859-3875 MR 1840850, 10.1088/0305-4470/34/18/313
Reference: [9] Krupková, O., Musilová, J.: Nonholonomic variational systems.Reports on Math. Phys., 55, 2005, 211-220 Zbl 1134.37356, MR 2139585, 10.1016/S0034-4877(05)80028-X
Reference: [10] Krupková, O., Volná, J., Volný, P.: Constrained Lepage forms.In: Differential Geometry and its Applications, Proc. 10th Int. Conf. on Diff. Geom. and Appl., Olomouc, August 2007 (World Scientific, Singapore, 2008) 627--633 Zbl 1167.58009, MR 2462828
Reference: [11] Massa, E., Pagani, E.: Classical mechanic of non-holonomic systems: a geometric approach.Ann. Inst. Henry Poincaré, 66, 1997, 1-36 MR 1434114
Reference: [12] Morando, P., Vignolo, S.: A geometric approach to constrained mechanical systems, symmetries and inverse problems.J. Phys. A.: Math. Gen., 31, 1998, 8233-8245 Zbl 0940.70008, MR 1651497, 10.1088/0305-4470/31/40/015
Reference: [13] Sarlet, W.: A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems.Extracta Mathematicae, 11, 1996, 202-212 MR 1424757
Reference: [14] Swaczyna, M., Volný, P.: Uniform projectile motion as a nonholonomic system with a nonlinear constraint.Int. J. of Non-Linear Mechanics. Submitted
Reference: [15] Tonti, E.: Variational formulation of nonlinear differential equations I, II.Bull. Acad. Roy. Belg. Cl. Sci., 55, 1969, 137-165, 262--278 MR 0256235
Reference: [16] Vainberg, M.M.: Variational methods in the theory of nonlinear operators.1959, GITL, Moscow, (in Russian).
.

Files

Files Size Format View
ActaOstrav_20-2012-1_6.pdf 446.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo