Previous |  Up |  Next

Article

Title: On solution sets of information inequalities (English)
Author: Ay, Nihat
Author: Wenzel, Walter
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 5
Year: 2012
Pages: 845-864
Summary lang: English
.
Category: math
.
Summary: We investigate solution sets of a special kind of linear inequality systems. In particular, we derive characterizations of these sets in terms of minimal solution sets. The studied inequalities emerge as information inequalities in the context of Bayesian networks. This allows to deduce structural properties of Bayesian networks, which is important within causal inference. (English)
Keyword: linear inequalities
Keyword: polyhedral sets
Keyword: Bayesian networks
Keyword: information
Keyword: entropy
MSC: 15A39
MSC: 52Bxx
MSC: 94A17
idMR: MR3086855
.
Date available: 2012-12-17T13:26:34Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143085
.
Reference: [1] Ay, N.: A refinement of the common cause principle..Discrete Appl. Math. 157 (2009), 2439-2457. MR 2527961, 10.1016/j.dam.2008.06.032
Reference: [2] Ay, N., Polani, D.: Information flows in causal networks..Adv. Complex Systems 11 (2008), 1, 17-41. Zbl 1163.94417, MR 2400125, 10.1142/S0219525908001465
Reference: [3] Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies..Aequationes Math. 57 (1999), 121-152. Zbl 0937.52006, MR 1689190, 10.1007/s000100050074
Reference: [4] Martini, H., Wenzel, W.: Illumination and visibility problems in terms of closure operators..Beiträge zur Algebra und Geometrie 45 (2004), 2, 607-614. Zbl 1074.52001, MR 2093030
Reference: [5] Pearl, J.: Causality: Models, Reasoning and Inference..Cambridge University Press 2000. Zbl 1188.68291, MR 1744773
Reference: [6] Steudel, B., Ay, N.: Information-theoretic inference of common ancestors..Submitted. ArXiv preprint (2010) arXiv:1010.5720.
Reference: [7] Valentine, F. A.: Visible shorelines..Amer. Math. Monthly 77 (1970), 146-152. Zbl 0189.52903, MR 0257881, 10.2307/2317326
Reference: [8] Webster, R.: Convexity..Oxford University Press 1994. Zbl 1052.68785, MR 1443208
Reference: [9] Ziegler, G.: Lectures on Polytopes..Springer Verlag Berlin 1997. Zbl 0823.52002, MR 1311028
.

Files

Files Size Format View
Kybernetika_48-2012-5_2.pdf 607.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo