Previous |  Up |  Next

Article

Title: On an algorithm for testing T4 solvability of max-plus interval systems (English)
Author: Myšková, Helena
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 48
Issue: 5
Year: 2012
Pages: 924-938
Summary lang: English
.
Category: math
.
Summary: In this paper, we shall deal with the solvability of interval systems of linear equations in max-plus algebra. Max-plus algebra is an algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\}$, $a\otimes b=a+b$. The notation ${\mathbb A}\otimes x={\mathbb b}$ represents an interval system of linear equations, where ${\mathbb A}=[\overline{b},\overline{A}]$ and ${\mathbb b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 solvability and give an algorithm for checking the T4 solvability. (English)
Keyword: max-plus algebra
Keyword: interval system
Keyword: T4 vector
Keyword: T4 solvability
MSC: 15A06
MSC: 65G30
idMR: MR3086860
.
Date available: 2012-12-17T13:32:59Z
Last updated: 2013-09-24
Stable URL: http://hdl.handle.net/10338.dmlcz/143090
.
Reference: [1] Berežný, Š., Plavka, J.: Efficient algorithm for el-parametric eigenvalue-eigenvector problem in fuzzy algebra..In: AEI'2008 FEI TU, Košice 2008, pp. 53-57.
Reference: [2] Cechlárová, K.: Solutions of interval systems in max-plus algebra..In: Proc. of SOR 2001 (V. Rupnik, L. Zadnik-stirn, and S. Drobne, eds.), Preddvor, pp. 321-326. MR 1861219
Reference: [3] K.Cechlárová, Cuninghame-Green, R. A.: Interval systems of max-separable linear equations..Linear Algebra Appl. 340 (2002), 215-224. Zbl 1004.15009, MR 1869429
Reference: [4] Cuninghame-Green, R. A.: Minimax Algebra..Lecture Notes in Econom. and Math. Systems 1966, Springer, Berlin 1979. Zbl 0739.90073, MR 0580321
Reference: [5] Gavalec, M., Plavka, J.: Monotone interval eigenproblem in max-min algebra..Kybernetika 43 (2010), 3, 387-396. Zbl 1202.15013, MR 2676076
Reference: [6] Kreinovich, J., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity of Feasibility of Data Processing and Interval Computations..Kluwer, Dordrecht 1998.
Reference: [7] Myšková, H.: Interval systems of max-separable linear equations..Linear Algebra Appl. 403 (2005), 263-272. Zbl 1129.15003, MR 2140286
Reference: [8] Myšková, H.: Control solvability of interval systems of max-separable linear equations..Linear Algebra Appl. 416 (2006), 215-223. Zbl 1129.15003, MR 2242726
Reference: [9] Myšková, H.: Solvability of interval systems in fuzzy algebra..In: Proc. 15th Internacional Scientific Conference on Mathematical Methods in Economics and Industry, Herĺany 2007, pp. 153-157.
Reference: [10] Nachtigall, K.: Powers of matrices over an extremal algebras with applications to periodic graphs..Math. Methods Oper. Res. 46 (1997), 87-102. MR 1464921, 10.1007/BF01199464
Reference: [11] al., G. J. Oldser et: Course notes: Max-algebra aproach to discrete event systems..In: Algebres Max-Plus et Applications an Informatique et Automatique. INRIA 1998, pp. 147-196.
Reference: [12] Plavka, J.: On the $O(n^3)$ algorithm for checking the strong robustness of interval fuzzy matrices..Discrete Appl. Math. 160 (2012), 640-647. MR 2876347, 10.1016/j.dam.2011.11.010
Reference: [13] Rohn, J.: Systems of Interval Linear Equations and Inequalities (Rectangular Case)..Technical Report No. 875, Institute of Computer Science, Academy of Sciences of the Czech Republic 2002.
Reference: [14] Rohn, J.: Complexity of some linear problems with interval data..Reliable Comput. 3 (1997), 315-323. Zbl 0888.65052, MR 1616269, 10.1023/A:1009987227018
Reference: [15] Zimmermann, K.: Extremální algebra..Ekonomicko-matematická laboratoř Ekonomického ústavu ČSAV, Praha 1976.
.

Files

Files Size Format View
Kybernetika_48-2012-5_7.pdf 355.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo