Previous |  Up |  Next

Article

Keywords:
bias; censoring; least squares; linear regression; Kaplan–Meier estimator
Summary:
This paper proposes a bias reduction of the coefficients' estimator for linear regression models when observations are randomly censored and the error distribution is unknown. The proposed bias correction is applied to the weighted least squares estimator proposed by Stute [28] [W. Stute: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103.], and it is based on model-based bootstrap resampling techniques that also allow us to work with censored data. Our bias-corrected estimator proposal is evaluated and its behavior assessed in simulation studies concluding that both the bias and the mean square error are reduced with the new proposal.
References:
[1] Akritas, M. G.: Bootstrapping the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 81 (1986), 1032-1038. MR 0867628 | Zbl 0635.62032
[2] Altman, D. G., Stavola, B. L. De, Love, S. B., Stepniewska, K. A.: Review of survival analyses published in cancer journals. British J. Cancer. 72 (1985), 511-518. DOI 10.1038/bjc.1995.364
[3] Buckley, J. J., James, I. R.: Linear regression with censored data. Biometrika 66 (1979), 429-436. DOI 10.1093/biomet/66.3.429 | Zbl 0425.62051
[4] Chatterjee, S., McLeish, D. L.: Fitting linear regression models to censored data by least squares and maximum likelihood methods. Comm. Statist. Theory Methods 15 (1986), 3227-3243. DOI 10.1080/03610928608829305 | MR 0860480 | Zbl 0616.62093
[5] Chen, Y. Y., Hollander, M., Langberg, N. A.: Small sample results for the Kaplan-Meier estimator. J. Amer. Statist. Assoc. 77 (1982), 141-144. DOI 10.1080/01621459.1982.10477777 | MR 0648036 | Zbl 0504.62033
[6] Cox, D. R.: Regression models and life-tables. J. R. Stat. Soc. Ser. B. 34 (1972), 187-220. MR 0341758 | Zbl 0243.62041
[7] Cox, D. R.: Partial likelihood. Biometrika 62 (1975), 269-276. DOI 10.1093/biomet/62.2.269 | MR 0400509 | Zbl 0312.62002
[8] Davison, A. C., Hinkley, D. V.: Bootstrap Methods and Their Application. Cambridge University Press, Cambridge 1997. MR 1478673 | Zbl 0886.62001
[9] Efron, B.: The two sample problem with censored data. In: Proc. 5th Berkeley Symposium 4 (1967), pp. 831-853.
[10] Efron, B.: Censored data and the bootstrap. J. Amer. Statist. Assoc. 76 (1981), 312-319. DOI 10.1080/01621459.1981.10477650 | MR 0624333 | Zbl 0461.62039
[11] Efron, B., Tibshirani, R. J.: An Introduction to the Bootstrap. Chapman and Hall, New York 1993. MR 1270903 | Zbl 0835.62038
[12] Gill, R. D.: Censoring and Stochastics Integrals. Math. Centre Tracts 124, Math. Centrum, Amsterdam 1980. MR 0596815
[13] Heller, G., Simonoff, J. S.: A comparison of estimators for regression with a censored response variable. Biometrika 77 (1990), 515-520. DOI 10.1093/biomet/77.3.515 | MR 1087841
[14] Jin, Z., Lin, D., Wei, L. J., Ying, Z.: Rank-based inference for the accelerated failure time model. Biometrika 90 (2003), 341-353. DOI 10.1093/biomet/90.2.341 | MR 1986651 | Zbl 1034.62103
[15] Kaplan, E. L., Meier, P.: Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 (1958), 457-481. DOI 10.1080/01621459.1958.10501452 | MR 0093867 | Zbl 0089.14801
[16] Koul, H., Susarla, V., Van-Ryzin, J.: Regression analysis with randomly right-censored data. Ann. Statist. 9 (1981), 1279-1288. DOI 10.1214/aos/1176345644 | MR 0630110 | Zbl 0477.62046
[17] Lai, T. L., Ying, Z.: Linear rank statistics in regression analysis with censored or truncated data. J. Multivariate Anal. 40 (1992), 13-45. DOI 10.1016/0047-259X(92)90088-W | MR 1149249 | Zbl 0799.62071
[18] Leurgans, S.: Linear models, random censoring and synthetic data. Biometrika 74 (1987), 301-309. DOI 10.2307/2336144 | MR 0903130 | Zbl 0649.62068
[19] Mauro, D.: A combinatoric approach to the Kaplan-Meier estimator. Ann. Statist. 13 (1985), 142-149. DOI 10.1214/aos/1176346582 | MR 0773158 | Zbl 0575.62043
[20] Miller, R. G.: Least squares regression with censored data. Biometrika 63 (1976), 449-464. DOI 10.1093/biomet/63.3.449 | MR 0458737 | Zbl 0344.62058
[21] Miller, R. G., Halpern, J.: Regression with censored data. Biometrika 69 (1982), 521-531. DOI 10.1093/biomet/69.3.521 | MR 0695199 | Zbl 0503.62091
[22] Orbe, J., Ferreira, E., Núñez-Antón, V.: Censored partial regression. Biostatistics 4 (2003), 109-121. DOI 10.1093/biostatistics/4.1.109 | Zbl 1139.62307
[23] Reid, N.: Estimating the median survival time. Biometrika 68 (1981), 601-608. DOI 10.1093/biomet/68.3.601 | MR 0637777 | Zbl 0479.62029
[24] Reid, N.: A conversation with Sir David Cox. Statist. Sci. 9 (1994), 439-455. DOI 10.1214/ss/1177010394 | MR 1325436 | Zbl 0955.01543
[25] Ritov, Y.: Estimation in a linear regression model with censored data. Ann. Statist. 18 (1990), 303-328. DOI 10.1214/aos/1176347502 | MR 1041395 | Zbl 0713.62045
[26] Schmee, J., Hahn, G. J.: A simple method for regression analysis with censored data (with discussion). Technometrics 21 (1979), 417-434. DOI 10.1080/00401706.1979.10489811
[27] Stare, J., Heinzl, F., Harrel, F.: On the use of Buckley and James least squares regression for survival data. In: New Approaches in Applied Statistics (A. Ferligoj and A. Mrvar, eds.), Metodološki zvezki 16, Ljubljana: Eslovenia, 2000, pp. 125-134.
[28] Stute, W.: Consistent estimation under random censorship when covariables are present. J. Multivariate Anal. 45 (1993), 89-103. DOI 10.1006/jmva.1993.1028 | MR 1222607 | Zbl 0767.62036
[29] Stute, W.: The bias of Kaplan-Meier integrals. Scand. J. Stat. 21 (1994), 475-484. MR 1310090 | Zbl 0812.62042
[30] Stute, W.: Improved estimation under random censorship. Comm. Statist. Theory Methods 23 (1994), 2671-2682. DOI 10.1080/03610929408831409 | MR 1294919 | Zbl 0825.62226
[31] Stute, W.: Distributional convergence under random censorship when covariables are present. Scand. J. Stat. 23 (1996), 461-471. MR 1439707 | Zbl 0903.62045
[32] Stute, W.: The jackknife estimate of variance of a Kaplan-Meier integral. Ann. Statist. 24 (1996), 2679-2704. DOI 10.1214/aos/1032181175 | MR 1425974 | Zbl 0878.62027
[33] Stute, W.: Nonlinear censored regression. Statist. Sinica 9 (1999), 1089-1102. MR 1744826 | Zbl 0940.62061
[34] Stute, W., Wang, J. L.: The jackknife estimate of a Kaplan-Meier integral. Biometrika 81 (1994), 602-606. MR 1311103 | Zbl 0809.62037
[35] Tsiatis, A. A.: Estimating regression parameters using linear rank tests for censored data. Ann. Statist. 18 (1990), 354-372. DOI 10.1214/aos/1176347504 | MR 1041397 | Zbl 0701.62051
[36] Wei, L. J.: The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat. Med. 11 (1992), 1871-1879. DOI 10.1002/sim.4780111409
[37] Wellner, J. A.: A heavy censoring limit theorem for the product limit estimator. Ann. Statist. 13 (1985), 150-162. DOI 10.1214/aos/1176346583 | MR 0773159 | Zbl 0609.62061
[38] Zhou, M.: Two-sided bias bound of the Kaplan-Meier estimator. Probab. Theory and Related Fields 79 (1988), 165-173. MR 0958286 | Zbl 0631.62044
Partner of
EuDML logo