Previous |  Up |  Next

Article

Title: Partial dcpo’s and some applications (English)
Author: Dongsheng, Zhao
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 4
Year: 2012
Pages: 243-260
Summary lang: English
.
Category: math
.
Summary: We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces $X$, the corresponding partial dcpo’s of continuous real valued functions on $X$ are continuous partial dcpos; (iii) if a space $X$ is Hausdorff compact, the lattice of all S-lower semicontinuous functions on $X$ is the dcpo-completion of that of continuous real valued functions on the space; (iv) a topological space has an injective hull iff it is homeomorphic to the pre-Scott space of a continuous partial dcpo whose way-below relation satisfies the interpolation property. (English)
Keyword: directed complete poset
Keyword: Scott topology
Keyword: dcpo-completion
Keyword: partial dcpo
Keyword: C-space
Keyword: lattice of continuous functions
Keyword: lower semicontinuous functions
Keyword: injective hull
MSC: 06B23
MSC: 06B35
MSC: 06F30
MSC: 54A05
MSC: 54C05
MSC: 54C30
idMR: MR3007608
DOI: 10.5817/AM2012-4-243
.
Date available: 2012-12-17T13:49:17Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143099
.
Reference: [1] Banaschewski, B.: Essential extensions of $T_0$–spaces.General Topology and Appl. 7 (1977), 233–246. Zbl 0371.54026, MR 0458354
Reference: [2] Bourbaki, N.: General Topology.vol. IX, Paris, 1948.
Reference: [3] Edalat, A., Heckmann, R.: A computational model for metric spaces.Theoret. Comput. Sci. 193 (1998), 53–73. Zbl 1011.54026, MR 1600616, 10.1016/S0304-3975(96)00243-5
Reference: [4] Engelking, R.: General Topology.Polish Scientific Publisher, Warszawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [5] Erné, M.: The ABC of order and topology.Category Theory at Work (Herlich, H., Porst, H.-E., eds.), Heldermann Verlag, Berlin, 1991, pp. 57–83. Zbl 0735.18005, MR 1147919
Reference: [6] Erné, M.: Minimal bases, ideal extensions, and basic dualities.Topology Proc. 29 (2005), 445–489. Zbl 1128.06001, MR 2244484
Reference: [7] Erné, M.: Algebraic models for T1-spaces.Topology Appl. 158 (7) (2011), 945–967. MR 2783149
Reference: [8] Ershov, Yu. L.: Computable functionals of finite types.Algebra and Logic 11 (4) (1972), 367–437. Zbl 0285.02040, MR 0360238
Reference: [9] Ershov, Yu. L.: On d–spaces.Theoret. Comput. Sci. 224 (1999), 59–72. Zbl 0976.54015, MR 1714790, 10.1016/S0304-3975(98)00307-7
Reference: [10] Gierz, G., al., et: Continuous lattices and domains.Encyclopedia Math. Appl., vol. 93, Cambridge University Press, 2003. Zbl 1088.06001, MR 1975381
Reference: [11] Hoffmann, R.: Continuous posets, prime spectra of completely distributive lattices and Hausdorff compactifications.Continuous Lattices, Lecture Notes in Math. 159 - 208., vol. 871, Springer–Verlag, 1981, pp. 159–208.
Reference: [12] Johnstone, P.: Scott is not always sober.Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 282–283. Zbl 0469.06002
Reference: [13] Johnstone, P.: Stone spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074
Reference: [14] Jung, A., Moshier, M. A., Vickers, S.: Presenting dcpos and dcpo algebras.Proceedings of the 24th Annual Conference on foundation of programming semantics, Electronic Notes in Theoretical Computer Science, vol. 218, 2008, pp. 209–229.
Reference: [15] Kamimura, T., Tang, A.: Total objects of domains.Theoret. Comput. Sci. 34 (1984), 275–288. Zbl 0551.68047, MR 0773457, 10.1016/0304-3975(84)90055-0
Reference: [16] Keimel, K., Lawson, J. D.: D–completions and the d–topology.Ann. Pure Appl. Logic 159 (3) (2009), 292–306. Zbl 1172.54016, MR 2522623, 10.1016/j.apal.2008.06.019
Reference: [17] Lawson, J. D.: The duality of continuous posets.Houston J. Math. 5 (1979), 357–394. Zbl 0428.06003, MR 0559976
Reference: [18] Lawson, J. D.: Spaces of maximal points.Math. Structures Comput. Sci. 7 (5) (1997), 543–555. Zbl 0985.54025, MR 1486322, 10.1017/S0960129597002363
Reference: [19] Liang, L., Klause, K.: Order environment of topological spaces.Acta Math. Sinica 20 (5) (2004), 943–948. 10.1007/s10114-004-0365-8
Reference: [20] Martin, K.: Ideal models of spaces.Theoret. Comput. Sci. 305 (2003), 277–297. Zbl 1044.54005, MR 2013575, 10.1016/S0304-3975(02)00698-9
Reference: [21] Martin, K.: The regular spaces with countably based models.Theoret. Comput. Sci. 305 (2003), 299–310. Zbl 1053.54037, MR 2013576, 10.1016/S0304-3975(02)00700-4
Reference: [22] Martin, K.: Topological games in domain theory.Topology Appl. 129 (2) (2003), 177–186. Zbl 1026.06012, MR 1961398, 10.1016/S0166-8641(02)00147-5
Reference: [23] Scott, D. S.: Continuous lattices.Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer–Verlag, 1972, pp. 97–136. Zbl 0239.54006, MR 0404073
Reference: [24] Tong, H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289–292. Zbl 0046.16203, MR 0050265, 10.1215/S0012-7094-52-01928-5
Reference: [25] Waszkiewicz, P.: How do domains model topologies.Electron. Notes Theor. Comput. Sci. 83 (2004), 1–18.
Reference: [26] Wyler, O.: Dedekind complete posets and Scott topologies.Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 384–389. Zbl 0488.54018
Reference: [27] Zhao, D.: Poset models of topological spaces.Proceeding of International Conference on Quantitative Logic and Quantification of Software, Global–Link Publisher, 2009, pp. 229–238.
Reference: [28] Zhao, D., Fan, T.: dcpo-completion of posets.Theoret. Comput. Sci. 411 (2010), 2167–2173. Zbl 1192.06007, MR 2662513, 10.1016/j.tcs.2010.02.020
.

Files

Files Size Format View
ArchMathRetro_048-2012-4_1.pdf 541.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo