Title:
|
Partial dcpo’s and some applications (English) |
Author:
|
Dongsheng, Zhao |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
243-260 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce partial dcpo’s and show their some applications. A partial dcpo is a poset associated with a designated collection of directed subsets. We prove that (i) the dcpo-completion of every partial dcpo exists; (ii) for certain spaces $X$, the corresponding partial dcpo’s of continuous real valued functions on $X$ are continuous partial dcpos; (iii) if a space $X$ is Hausdorff compact, the lattice of all S-lower semicontinuous functions on $X$ is the dcpo-completion of that of continuous real valued functions on the space; (iv) a topological space has an injective hull iff it is homeomorphic to the pre-Scott space of a continuous partial dcpo whose way-below relation satisfies the interpolation property. (English) |
Keyword:
|
directed complete poset |
Keyword:
|
Scott topology |
Keyword:
|
dcpo-completion |
Keyword:
|
partial dcpo |
Keyword:
|
C-space |
Keyword:
|
lattice of continuous functions |
Keyword:
|
lower semicontinuous functions |
Keyword:
|
injective hull |
MSC:
|
06B23 |
MSC:
|
06B35 |
MSC:
|
06F30 |
MSC:
|
54A05 |
MSC:
|
54C05 |
MSC:
|
54C30 |
idMR:
|
MR3007608 |
DOI:
|
10.5817/AM2012-4-243 |
. |
Date available:
|
2012-12-17T13:49:17Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143099 |
. |
Reference:
|
[1] Banaschewski, B.: Essential extensions of $T_0$–spaces.General Topology and Appl. 7 (1977), 233–246. Zbl 0371.54026, MR 0458354 |
Reference:
|
[2] Bourbaki, N.: General Topology.vol. IX, Paris, 1948. |
Reference:
|
[3] Edalat, A., Heckmann, R.: A computational model for metric spaces.Theoret. Comput. Sci. 193 (1998), 53–73. Zbl 1011.54026, MR 1600616, 10.1016/S0304-3975(96)00243-5 |
Reference:
|
[4] Engelking, R.: General Topology.Polish Scientific Publisher, Warszawa, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[5] Erné, M.: The ABC of order and topology.Category Theory at Work (Herlich, H., Porst, H.-E., eds.), Heldermann Verlag, Berlin, 1991, pp. 57–83. Zbl 0735.18005, MR 1147919 |
Reference:
|
[6] Erné, M.: Minimal bases, ideal extensions, and basic dualities.Topology Proc. 29 (2005), 445–489. Zbl 1128.06001, MR 2244484 |
Reference:
|
[7] Erné, M.: Algebraic models for T1-spaces.Topology Appl. 158 (7) (2011), 945–967. MR 2783149 |
Reference:
|
[8] Ershov, Yu. L.: Computable functionals of finite types.Algebra and Logic 11 (4) (1972), 367–437. Zbl 0285.02040, MR 0360238 |
Reference:
|
[9] Ershov, Yu. L.: On d–spaces.Theoret. Comput. Sci. 224 (1999), 59–72. Zbl 0976.54015, MR 1714790, 10.1016/S0304-3975(98)00307-7 |
Reference:
|
[10] Gierz, G., al., et: Continuous lattices and domains.Encyclopedia Math. Appl., vol. 93, Cambridge University Press, 2003. Zbl 1088.06001, MR 1975381 |
Reference:
|
[11] Hoffmann, R.: Continuous posets, prime spectra of completely distributive lattices and Hausdorff compactifications.Continuous Lattices, Lecture Notes in Math. 159 - 208., vol. 871, Springer–Verlag, 1981, pp. 159–208. |
Reference:
|
[12] Johnstone, P.: Scott is not always sober.Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 282–283. Zbl 0469.06002 |
Reference:
|
[13] Johnstone, P.: Stone spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074 |
Reference:
|
[14] Jung, A., Moshier, M. A., Vickers, S.: Presenting dcpos and dcpo algebras.Proceedings of the 24th Annual Conference on foundation of programming semantics, Electronic Notes in Theoretical Computer Science, vol. 218, 2008, pp. 209–229. |
Reference:
|
[15] Kamimura, T., Tang, A.: Total objects of domains.Theoret. Comput. Sci. 34 (1984), 275–288. Zbl 0551.68047, MR 0773457, 10.1016/0304-3975(84)90055-0 |
Reference:
|
[16] Keimel, K., Lawson, J. D.: D–completions and the d–topology.Ann. Pure Appl. Logic 159 (3) (2009), 292–306. Zbl 1172.54016, MR 2522623, 10.1016/j.apal.2008.06.019 |
Reference:
|
[17] Lawson, J. D.: The duality of continuous posets.Houston J. Math. 5 (1979), 357–394. Zbl 0428.06003, MR 0559976 |
Reference:
|
[18] Lawson, J. D.: Spaces of maximal points.Math. Structures Comput. Sci. 7 (5) (1997), 543–555. Zbl 0985.54025, MR 1486322, 10.1017/S0960129597002363 |
Reference:
|
[19] Liang, L., Klause, K.: Order environment of topological spaces.Acta Math. Sinica 20 (5) (2004), 943–948. 10.1007/s10114-004-0365-8 |
Reference:
|
[20] Martin, K.: Ideal models of spaces.Theoret. Comput. Sci. 305 (2003), 277–297. Zbl 1044.54005, MR 2013575, 10.1016/S0304-3975(02)00698-9 |
Reference:
|
[21] Martin, K.: The regular spaces with countably based models.Theoret. Comput. Sci. 305 (2003), 299–310. Zbl 1053.54037, MR 2013576, 10.1016/S0304-3975(02)00700-4 |
Reference:
|
[22] Martin, K.: Topological games in domain theory.Topology Appl. 129 (2) (2003), 177–186. Zbl 1026.06012, MR 1961398, 10.1016/S0166-8641(02)00147-5 |
Reference:
|
[23] Scott, D. S.: Continuous lattices.Toposes, Algebraic Geometry and Logic, Lecture Notes in Math., vol. 274, Springer–Verlag, 1972, pp. 97–136. Zbl 0239.54006, MR 0404073 |
Reference:
|
[24] Tong, H.: Some characterizations of normal and perfectly normal spaces.Duke Math. J. 19 (1952), 289–292. Zbl 0046.16203, MR 0050265, 10.1215/S0012-7094-52-01928-5 |
Reference:
|
[25] Waszkiewicz, P.: How do domains model topologies.Electron. Notes Theor. Comput. Sci. 83 (2004), 1–18. |
Reference:
|
[26] Wyler, O.: Dedekind complete posets and Scott topologies.Continuous Lattices, Lecture Notes in Math., vol. 871, Springer–Verlag, 1981, pp. 384–389. Zbl 0488.54018 |
Reference:
|
[27] Zhao, D.: Poset models of topological spaces.Proceeding of International Conference on Quantitative Logic and Quantification of Software, Global–Link Publisher, 2009, pp. 229–238. |
Reference:
|
[28] Zhao, D., Fan, T.: dcpo-completion of posets.Theoret. Comput. Sci. 411 (2010), 2167–2173. Zbl 1192.06007, MR 2662513, 10.1016/j.tcs.2010.02.020 |
. |