[3] Burton, T. A.: 
Liapunov functionals, fixed points and stability by Krasnoselskii’s theorem. Nonlinear Stud. 9 (2002), 181–190. 
MR 1898587 | 
Zbl 1084.47522 
[4] Burton, T.A.: 
Stability by fixed point theory for functional differential equations. Mineola, NY, Dover Publications, Inc., 2006. 
MR 2281958 | 
Zbl 1160.34001 
[7] Curtain, R. F., Pritchard, A. J.: 
Functional analysis in modern applied mathematics. Mathematics in Science and Engineering, Vol. 132. London–New York, Academic Press, 1977. 
MR 0479787 | 
Zbl 0448.46002 
[8] Elkadeky, W. K., El-Sayed, A. M.: Caratheodory theorem for a nonlocal problem of the differential equation $x^{\prime }=f(t,x^{\prime })$. Alex. J. Math. 1 (2) (2010), 8–14.
[10] Hafsia, D., Ahcene, D.: 
Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J. 15 (4) (2008), 635–642. 
MR 2494962 | 
Zbl 1171.47061 
[11] Hafsia, D., Ahcene, D.: 
Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations 127 (2010), 1–8. 
MR 2685037 | 
Zbl 1203.34110 
[12] Kaufmann, E. R.: 
A nonlinear neutral periodic differential equation. Electron. J. Differential Equations 88 (2010), 1–8. 
MR 2680291 | 
Zbl 1200.34094 
[14] Raffoul, Y. N.: 
Periodic solutions for neutral nonlinear differential equations with functional delays. Electron. J. Differential Equations 102 (2003), 1–7. 
MR 2011575 
[15] Raffoul, Y. N.: 
Positive periodic solutions in neutral nonlinear differential equations. Electron. J. Qual. Theory Differ. Equ. 16 (2007), 1–10. 
MR 2336604 | 
Zbl 1182.34091