Previous |  Up |  Next

Article

Title: Rarita-Schwinger type operators on spheres and real projective space (English)
Author: Li, Junxia
Author: Ryan, John
Author: Vanegas, Carmen J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 4
Year: 2012
Pages: 271-289
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas. (English)
Keyword: spherical Rarita-Schwinger type operators
Keyword: Cayley transformation
Keyword: real projective space
Keyword: Almansi-Fischer decomposition
Keyword: Iwasawa decomposition
MSC: 30G35
MSC: 53C27
idMR: MR3007610
DOI: 10.5817/AM2012-4-271
.
Date available: 2012-12-17T13:51:49Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143102
.
Reference: [1] Balinsky, A., Ryan, J.: Some sharp $L^2$ inequalities for Dirac type operators.SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. Zbl 1141.15026, MR 2366908
Reference: [2] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis.Pitman, London, 1982. Zbl 0529.30001, MR 0697564
Reference: [3] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis.J. Funct. Anal. 185 (2) (2001), 425–455. Zbl 1078.30041, MR 1856273, 10.1006/jfan.2001.3781
Reference: [4] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations.Ann. Global Anal. Geom. 21 (2002), 215–240. Zbl 1025.58013, MR 1896475, 10.1023/A:1014923601006
Reference: [5] Cnops, J., Malonek, H.: An introduction to Clifford analysis.Textos Mat. Sér. B (1995), vi+64. Zbl 0997.15501, MR 1417718
Reference: [6] Dunkl, C., Li, J., Ryan, J., Van Lancker, P.: Some Rarita-Schwinger operators.submitted 2011, http://arxiv.org/abs/1102.1205.
Reference: [7] Krausshar, R. S., Ryan, J.: Conformally flat spin manifolds, Dirac operators and automorphic forms.J. Math. Anal. Appl. 325 (2007), 359–376. Zbl 1107.30037, MR 2273531, 10.1016/j.jmaa.2006.01.045
Reference: [8] Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE.J. Fourier Anal. Appl. 8 (6) (2002), 535–563. Zbl 1047.53023, MR 1932745, 10.1007/s00041-002-0026-1
Reference: [9] Porteous, I.: Clifford Algebra and the Classical Groups.Cambridge University Press, Cambridge, 1995. MR 1369094
Reference: [10] Ryan, J.: Iterated Dirac operators in $C^n$.Z. Anal. Anwendungen 9 (1990), 385–401. MR 1119539
Reference: [11] Ryan, J.: Clifford analysis on spheres and hyperbolae.Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. Zbl 0909.30007, MR 1486528, 10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X
Reference: [12] Ryan, J.: Dirac operators on spheres and hyperbolae.Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. Zbl 0894.30031, MR 1679305
Reference: [13] Van Lancker, P.: Clifford Analysis on the Sphere.Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. Zbl 0896.15015, MR 1627086
Reference: [14] Van Lancker, P.: Higher Spin Fields on Smooth Domains.Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. Zbl 1009.30029, MR 1890463
Reference: [15] Van Lancker, P.: Rarita-Schwinger fields in the half space.Complex Var. Elliptic Equ. 51 (2006), 563–579. Zbl 1117.30041, MR 2230266, 10.1080/17476930500482614
.

Files

Files Size Format View
ArchMathRetro_048-2012-4_3.pdf 531.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo