Title:
|
Rarita-Schwinger type operators on spheres and real projective space (English) |
Author:
|
Li, Junxia |
Author:
|
Ryan, John |
Author:
|
Vanegas, Carmen J. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2012 |
Pages:
|
271-289 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we deal with Rarita-Schwinger type operators on spheres and real projective space. First we define the spherical Rarita-Schwinger type operators and construct their fundamental solutions. Then we establish that the projection operators appearing in the spherical Rarita-Schwinger type operators and the spherical Rarita-Schwinger type equations are conformally invariant under the Cayley transformation. Further, we obtain some basic integral formulas related to the spherical Rarita-Schwinger type operators. Second, we define the Rarita-Schwinger type operators on the real projective space and construct their kernels and Cauchy integral formulas. (English) |
Keyword:
|
spherical Rarita-Schwinger type operators |
Keyword:
|
Cayley transformation |
Keyword:
|
real projective space |
Keyword:
|
Almansi-Fischer decomposition |
Keyword:
|
Iwasawa decomposition |
MSC:
|
30G35 |
MSC:
|
53C27 |
idMR:
|
MR3007610 |
DOI:
|
10.5817/AM2012-4-271 |
. |
Date available:
|
2012-12-17T13:51:49Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143102 |
. |
Reference:
|
[1] Balinsky, A., Ryan, J.: Some sharp $L^2$ inequalities for Dirac type operators.SIGMA, Symmetry Integrability Geom. Methods Appl. (2007), 10, paper 114, electronic only. Zbl 1141.15026, MR 2366908 |
Reference:
|
[2] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis.Pitman, London, 1982. Zbl 0529.30001, MR 0697564 |
Reference:
|
[3] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis.J. Funct. Anal. 185 (2) (2001), 425–455. Zbl 1078.30041, MR 1856273, 10.1006/jfan.2001.3781 |
Reference:
|
[4] Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations.Ann. Global Anal. Geom. 21 (2002), 215–240. Zbl 1025.58013, MR 1896475, 10.1023/A:1014923601006 |
Reference:
|
[5] Cnops, J., Malonek, H.: An introduction to Clifford analysis.Textos Mat. Sér. B (1995), vi+64. Zbl 0997.15501, MR 1417718 |
Reference:
|
[6] Dunkl, C., Li, J., Ryan, J., Van Lancker, P.: Some Rarita-Schwinger operators.submitted 2011, http://arxiv.org/abs/1102.1205. |
Reference:
|
[7] Krausshar, R. S., Ryan, J.: Conformally flat spin manifolds, Dirac operators and automorphic forms.J. Math. Anal. Appl. 325 (2007), 359–376. Zbl 1107.30037, MR 2273531, 10.1016/j.jmaa.2006.01.045 |
Reference:
|
[8] Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE.J. Fourier Anal. Appl. 8 (6) (2002), 535–563. Zbl 1047.53023, MR 1932745, 10.1007/s00041-002-0026-1 |
Reference:
|
[9] Porteous, I.: Clifford Algebra and the Classical Groups.Cambridge University Press, Cambridge, 1995. MR 1369094 |
Reference:
|
[10] Ryan, J.: Iterated Dirac operators in $C^n$.Z. Anal. Anwendungen 9 (1990), 385–401. MR 1119539 |
Reference:
|
[11] Ryan, J.: Clifford analysis on spheres and hyperbolae.Math. Methods Appl. Sci. 20 (18) (1997), 1617–1624. Zbl 0909.30007, MR 1486528, 10.1002/(SICI)1099-1476(199712)20:18<1617::AID-MMA926>3.0.CO;2-X |
Reference:
|
[12] Ryan, J.: Dirac operators on spheres and hyperbolae.Bol. Soc. Mat. Mexicana (3) 3 (2) (1997), 255–270. Zbl 0894.30031, MR 1679305 |
Reference:
|
[13] Van Lancker, P.: Clifford Analysis on the Sphere.Clifford Algebra and their Application in Mathematical Physics (Aachen, 1996), Fund. Theories Phys., 94, Kluwer Acad. Publ., Dordrecht, 1998, pp. 201–215. Zbl 0896.15015, MR 1627086 |
Reference:
|
[14] Van Lancker, P.: Higher Spin Fields on Smooth Domains.Clifford Analysis and Its Applications (Brackx, F., Chisholm, J. S. R., Souček, V., eds.), Kluwer, Dordrecht, 2001, pp. 389–398. Zbl 1009.30029, MR 1890463 |
Reference:
|
[15] Van Lancker, P.: Rarita-Schwinger fields in the half space.Complex Var. Elliptic Equ. 51 (2006), 563–579. Zbl 1117.30041, MR 2230266, 10.1080/17476930500482614 |
. |