Previous |  Up |  Next

Article

Title: On commutative rings whose prime ideals are direct sums of cyclics (English)
Author: Behboodi, M.
Author: Moradzadeh-Dehkordi, A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 4
Year: 2012
Pages: 291-299
Summary lang: English
.
Category: math
.
Summary: In this paper we study commutative rings $R$ whose prime ideals are direct sums of cyclic modules. In the case $R$ is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring $(R, \mathcal{M})$, the following statements are equivalent: (1) Every prime ideal of $R$ is a direct sum of cyclic $R$-modules; (2) ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$ where $\Lambda $ is an index set and $R/{\operatorname{Ann}}(w_{\lambda })$ is a principal ideal ring for each $\lambda \in \Lambda $; (3) Every prime ideal of $R$ is a direct sum of at most $|\Lambda |$ cyclic $R$-modules where $\Lambda $ is an index set and ${\mathcal{M}}=\bigoplus _{\lambda \in \Lambda }Rw_{\lambda }$; and (4) Every prime ideal of $R$ is a summand of a direct sum of cyclic $R$-modules. Also, we establish a theorem which state that, to check whether every prime ideal in a Noetherian local ring $(R, \mathcal{M})$ is a direct sum of (at most $n$) principal ideals, it suffices to test only the maximal ideal $\mathcal{M}$. (English)
Keyword: prime ideals
Keyword: cyclic modules
Keyword: local rings
Keyword: principal ideal rings
MSC: 13C05
MSC: 13E05
MSC: 13E10
MSC: 13F10
MSC: 13H99
idMR: MR3007611
DOI: 10.5817/AM2012-4-291
.
Date available: 2012-12-17T13:52:53Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143103
.
Reference: [1] Anderson, D. D.: A note on minimal prime ideals.Proc. Amer. Math. Soc. 122 (1994), 13–14. Zbl 0841.13001, MR 1191864, 10.1090/S0002-9939-1994-1191864-2
Reference: [2] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A.: Commutative Noetherian local rings whose ideals are direct sums of cyclic modules.J. Algebra 345 (2011), 257–265. Zbl 1244.13008, MR 2842065, 10.1016/j.jalgebra.2011.08.017
Reference: [3] Behboodi, M., Ghorbani, A., Moradzadeh–Dehkordi, A., Shojaee, S. H.: On left Köthe rings and a generalization of the Köthe–Cohen–Kaplansky theorem.Proc. Amer. Math. Soc. (to appear). MR 2530766
Reference: [4] Behboodi, M., Shojaee, S. H.: Commutative local rings whose ideals are direct sums of cyclic modules.submitted.
Reference: [5] Cohen, I. S.: Commutative rings with restricted minimum condition.Duke Math. J. 17 (1950), 27–42. Zbl 0041.36408, MR 0033276, 10.1215/S0012-7094-50-01704-2
Reference: [6] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules.Math. Z. 54 (1951), 97–101. Zbl 0043.26702, MR 0043073, 10.1007/BF01179851
Reference: [7] Kaplansky, I.: Elementary divisors and modules.Trans. Amer. Math. Soc. 66 (1949), 464–491. Zbl 0036.01903, MR 0031470, 10.1090/S0002-9947-1949-0031470-3
Reference: [8] Köthe, G.: Verallgemeinerte abelsche gruppen mit hyperkomplexen operatorenring.Math. Z. 39 (1935), 31–44. MR 1545487, 10.1007/BF01201343
Reference: [9] Warfield, R. B. Jr., : A Krull–Schmidt theorem for infinite sums of modules.Proc. Amer. Math. Soc. 22 (1969), 460–465. Zbl 0176.31401, MR 0242886, 10.1090/S0002-9939-1969-0242886-2
.

Files

Files Size Format View
ArchMathRetro_048-2012-4_4.pdf 468.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo