Previous |  Up |  Next

Article

Title: On holomorphically projective mappings of $e$-Kähler manifolds (English)
Author: Hinterleitner, Irena
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 333-338
Summary lang: English
.
Category: math
.
Summary: In this paper we study fundamental equations of holomorphically projective mappings of $e$-Kähler spaces (i.e. classical, pseudo- and hyperbolic Kähler spaces) with respect to the smoothness class of metrics. We show that holomorphically projective mappings preserve the smoothness class of metrics. (English)
Keyword: holomorphically projective mappings
Keyword: smoothness class
Keyword: Kähler space
Keyword: hyperbolic Kähler space
MSC: 53B20
MSC: 53B21
MSC: 53B30
MSC: 53B35
MSC: 53C26
idMR: MR3007616
DOI: 10.5817/AM2012-5-333
.
Date available: 2012-12-17T13:58:53Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143109
.
Reference: [1] Alekseevsky, D. V.: Pseudo–Kähler and para–Kähler symmetric spaces. Handbook of pseudo–Riemannian geometry and supersymmetry.ndbook of pseudo–Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys. 16 (2010), 703–729. MR 2681606
Reference: [2] Beklemishev, D. V.: Differential geometry of spaces with almost complex structure.Akad. Nauk SSSR Inst. Naučn. Informacii, Moscow, 1965 Geometry (1963), 165–212. MR 0192434
Reference: [3] Domashev, V. V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces.Math. Notes 23 (1978), 160–163. 10.1007/BF01153160
Reference: [4] Hinterleitner, I., Mikeš, J.: Geodesic mappings and Einstein spaces.Geometric Methods in Physics, XXX Workshop in Białowieża, Poland 2011, arXiv:1201.2827v1 [math.DG], 2012.
Reference: [5] Kähler, E.: Über eine bemerkenswerte Hermitesche Metrik.Sem. Hamburg. Univ. 9 (1933), 173–186. 10.1007/BF02940642
Reference: [6] Kurbatova, I. N.: HP–mappings of H–spaces.Ukrain. Geom. Sb. 27 (1984), 75–83. Zbl 0571.58006, MR 0767421
Reference: [7] Mikeš, J.: Geodesic and holomorphically projective mappings of special Riemannian spaces.Ph.D. thesis, Odessa, 1979.
Reference: [8] Mikeš, J.: On holomorphically projective mappings of Kählerian spaces.Ukrain. Geom. Sb. 23 (1980), 90–98. Zbl 0463.53013
Reference: [9] Mikeš, J.: Holomorphically projective mappings and their generalizations.J. Math. Sci. 89 (1998), 1334–1353. MR 1619720, 10.1007/BF02414875
Reference: [10] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic mappings and some generalizations.Palacky University Press, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [11] Otsuki, T., Tashiro, Y.: On curves in Kaehlerian spaces.Math. J. Okayama Univ. 4 (1954), 57–78. Zbl 0057.14101, MR 0066024
Reference: [12] Prvanović, M.: Holomorphically projective transformations in a locally product space.Math. Balkanica 1 (1971), 195–213. MR 0288710
Reference: [13] Rashevsky, P. A.: Scalar fields in fibered space.Trudy Sem. Vektor. Tenzor. Anal. 6 (1948), 225–248.
Reference: [14] Shirokov, P. A.: Selected investigations on geometry.Kazan' University Press, 1966.
Reference: [15] Sinyukov, N. S.: Geodesic mappings of Riemannian spaces.Moscow, Nauka, 1979. Zbl 0637.53020, MR 0552022
Reference: [16] Sinyukov, N. S., Kurbatova, I. N., Mikeš, J.: Holomorphically projective mappings of Kähler spaces.Odessa, Odessk. Univ., 1985.
Reference: [17] Škodová, M., Mikeš, J., Pokorná, O.: On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces.Rend. Circ. Mat. Palermo (2) Suppl. 75 (2005), 309–316. Zbl 1109.53019, MR 2152369
Reference: [18] Tachibana, S.–I., Ishihara, S.: On infinitesimal holomorphically projective transformations in Kählerian manifolds.Tôhoku Math. J. (2) 12 (1960), 77–101. Zbl 0093.35404, MR 0120599, 10.2748/tmj/1178244489
Reference: [19] Yano, K.: Differential geometry of complex and almost comlex spaces.Pergamon Press, 1965.
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_4.pdf 412.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo