Previous |  Up |  Next

Article

Title: Local reflexion spaces (English)
Author: Gregorovič, Jan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 323-332
Summary lang: English
.
Category: math
.
Summary: A reflexion space is generalization of a symmetric space introduced by O. Loos in [4]. We generalize locally symmetric spaces to local reflexion spaces in the similar way. We investigate, when local reflexion spaces are equivalently given by a locally flat Cartan connection of certain type. (English)
Keyword: local reflexion space
Keyword: flat Cartan geometry
Keyword: local infinitesimal automorphisms
MSC: 53C10
MSC: 53C35
idMR: MR3007615
DOI: 10.5817/AM2012-5-323
.
Date available: 2012-12-17T13:57:21Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143108
.
Reference: [1] Alekseevsky, D. V., Michor, P. W.: Differential geometry of $\mathfrak{g}$–manifolds.Differential Geom. Appl. 5 (1995), 371–403. MR 1362865, 10.1016/0926-2245(95)00023-2
Reference: [2] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Math. Surveys Monogr. 154 (2009). Zbl 1183.53002, MR 2532439
Reference: [3] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer Verlag, Berlin–Heidelberg, 1993. MR 1202431
Reference: [4] Loos, O.: Spiegelungsräume und homogene symmetrische Räume.Math. Z. 99 (1967), 141–170. Zbl 0148.17403, MR 0212742, 10.1007/BF01123745
Reference: [5] Loos, O.: An intrinsic characterization of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms.Abh. Math. Sem. Univ. Hamburg 37 (1972), 160–179. Zbl 0239.55018, MR 0307124, 10.1007/BF02999694
Reference: [6] Sharpe, R. W.: Differential Geometry, Cartan’s Generalization of Klein’s Erlangen Program.Springer Verlag, New York, 1997. Zbl 0876.53001, MR 1453120
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_3.pdf 456.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo