Title:
|
Riemannian symmetries in flag manifolds (English) |
Author:
|
Piu, Paola |
Author:
|
Remm, Elisabeth |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
5 |
Year:
|
2012 |
Pages:
|
387-398 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb{Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$. (English) |
Keyword:
|
$\mathbb{Z}_2^k$-symmetric space |
Keyword:
|
flag manifolds |
Keyword:
|
Riemannian metrics |
MSC:
|
53C30 |
idMR:
|
MR3007620 |
DOI:
|
10.5817/AM2012-5-387 |
. |
Date available:
|
2012-12-17T14:03:37Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143113 |
. |
Reference:
|
[1] Arias–Marco, T., Kowalski, O.: Classification of 4–dimensional homogeneous D’Atri spaces.Czechoslovak Math. J. 58 (1) (2008), 203–239. Zbl 1174.53024, MR 2402535, 10.1007/s10587-008-0014-y |
Reference:
|
[2] Bahturin, Y., Goze, M.: $\mathbb{Z}_2^2$–symmetric spaces.Pacific J. Math. 236 (1) (2008), 1–21. MR 2398984, 10.2140/pjm.2008.236.1 |
Reference:
|
[3] Bouyakoub, A., Goze, M., Remm, E.: On Riemannian non symmetric spaces and flag manifolds.arXiv:math/0609790. MR 2114414 |
Reference:
|
[4] Goze, M., Remm, E.: $\Gamma $–symmetric spaces.Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. Zbl 1178.53047, MR 2523505 |
Reference:
|
[5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vollume II.llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR 0238225 |
Reference:
|
[6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume I.lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR 0152974 |
Reference:
|
[7] Kollross, A.: Exceptional $Z_2\times Z_2$–symmetric spaces.Pacific J. Math. 242 (1) (2009), 113–130. MR 2525505, 10.2140/pjm.2009.242.113 |
Reference:
|
[8] Kowalski, O.: Generalized symmetric spaces, volume II.lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. MR 0579184 |
Reference:
|
[9] Lutz, R.: Sur la géométrie des espaces $\Gamma $–symétriques.C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. Zbl 0474.53047, MR 0633562 |
. |