Previous |  Up |  Next

Article

Title: Riemannian symmetries in flag manifolds (English)
Author: Piu, Paola
Author: Remm, Elisabeth
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 387-398
Summary lang: English
.
Category: math
.
Summary: Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $\mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. The conditions for a metric adapted to the $\mathbb{Z}_2^2$-symmetric structure to be naturally reductive are detailed for the flag manifold $SO(5)/SO(2)\times SO(2) \times SO(1)$. (English)
Keyword: $\mathbb{Z}_2^k$-symmetric space
Keyword: flag manifolds
Keyword: Riemannian metrics
MSC: 53C30
idMR: MR3007620
DOI: 10.5817/AM2012-5-387
.
Date available: 2012-12-17T14:03:37Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143113
.
Reference: [1] Arias–Marco, T., Kowalski, O.: Classification of 4–dimensional homogeneous D’Atri spaces.Czechoslovak Math. J. 58 (1) (2008), 203–239. Zbl 1174.53024, MR 2402535, 10.1007/s10587-008-0014-y
Reference: [2] Bahturin, Y., Goze, M.: $\mathbb{Z}_2^2$–symmetric spaces.Pacific J. Math. 236 (1) (2008), 1–21. MR 2398984, 10.2140/pjm.2008.236.1
Reference: [3] Bouyakoub, A., Goze, M., Remm, E.: On Riemannian non symmetric spaces and flag manifolds.arXiv:math/0609790. MR 2114414
Reference: [4] Goze, M., Remm, E.: $\Gamma $–symmetric spaces.Differential geometry, World Sci. Publ., Hackensack, NJ, 2009, pp. 195–206. Zbl 1178.53047, MR 2523505
Reference: [5] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vollume II.llume II, Interscience Tracts in Pure and Applied Mathematics, No. 15, Interscience Publishers John Wiley and Sons, Inc., New York–London–Sydney, 1969. MR 0238225
Reference: [6] Kobayashi, S., Nomizu, K.: Foundations of differential geometry, volume I.lume I, Interscience Publishers, John Wiley and Sons, New York–London, 1963. MR 0152974
Reference: [7] Kollross, A.: Exceptional $Z_2\times Z_2$–symmetric spaces.Pacific J. Math. 242 (1) (2009), 113–130. MR 2525505, 10.2140/pjm.2009.242.113
Reference: [8] Kowalski, O.: Generalized symmetric spaces, volume II.lume II, Lecture Notes in Math. 805, Springer–Verlag, Berlin–New York, 1980. MR 0579184
Reference: [9] Lutz, R.: Sur la géométrie des espaces $\Gamma $–symétriques.C. R. Acad. Sci. Paris Sér. I Math. 293 (1) (1981), 55–58. Zbl 0474.53047, MR 0633562
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_8.pdf 491.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo