Previous |  Up |  Next

Article

Title: Solutions to a class of polynomially generalized Bers–Vekua equations using Clifford analysis (English)
Author: Ku, Min
Author: Kähler, Uwe
Author: Cerejeiras, Paula
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 371-385
Summary lang: English
.
Category: math
.
Summary: In this paper a class of polynomially generalized Vekua–type equations and of polynomially generalized Bers–Vekua equations with variable coefficients defined in a domain of Euclidean space are discussed. Using the methods of Clifford analysis, first the Fischer–type decomposition theorems for null solutions to these equations are obtained. Then we give, under some conditions, the solutions to the polynomially generalized Bers–Vekua equation with variable coefficients. Finally, we present the structure of the solutions to the inhomogeneous polynomially generalized Bers–Vekua equation. (English)
Keyword: Clifford analysis
Keyword: polynomially generalized Bers–Vekua operator
Keyword: Dirac operator
MSC: 30G35
MSC: 32A25
MSC: 35C10
idMR: MR3007619
DOI: 10.5817/AM2012-5-371
.
Date available: 2012-12-17T14:02:40Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143112
.
Reference: [1] Berglez, P.: Representation of pseudoanalytic functions in the space.More progresses in analysis. Proceedings of the 5th international ISAAC congress, Catania, Italy, July 25–30, 2005 (Begehr, H., Nicolosi, F., eds.), 2008, pp. 1119–1126. MR 1395232
Reference: [2] Berglez, P.: On the solutions of a class of iterated generalized Bers–Vekua equations in Clifford analysis.Math. Methods Appl. Sci. 33 (2010), 454–458. Zbl 1184.30038, MR 2641622
Reference: [3] Bers, L.: Theory of Pseudo–analytic Functions.New York University, Institute for Mathematics and Mechanics, III, 187 p., 1953. Zbl 0051.31603, MR 0057347
Reference: [4] Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis.Res. Notes Math., vol. 76, Pitman, London, 1982. Zbl 0529.30001, MR 0697564
Reference: [5] Delanghe, R., Brackx, F.: Hypercomplex function theory and Hilbert modules with reproducing kernel.Proc. London Math. Soc. 37 (3) (1978), 545–576. Zbl 0392.46019, MR 0512025
Reference: [6] Delanghe, R., Sommen, F., Souček, V.: Clifford algebra and spinor–valued functions.Math. Appl., vol. 53, Kluwer Acad. Publ., Dordrecht, 1992. Zbl 0747.53001, MR 1169463
Reference: [7] Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems.Birkhäuser, Basel, 1990. Zbl 0850.35001, MR 1096955
Reference: [8] Min, K., Daoshun, W.: Half Dirichlet problem for matrix functions on the unit ball in Hermitian Clifford.J. Math. Anal. Appl. 374 (2011), 442–457. Zbl 1203.30056, MR 2729233, 10.1016/j.jmaa.2010.08.015
Reference: [9] Min, K., Daoshun, W.: Solutions to polynomial Dirac equations on unbounded domains in Clifford analysis.Math. Methods Appl. Sci. 34 (2011), 418–427. MR 2791483
Reference: [10] Min, K., Daoshun, W., Lin, D.: Solutions to polynomial generalized Bers–Vekua equations in Clifford analysis.Complex Anal. Oper. Theory 6 (2) (2012), 407–424. MR 2899761, 10.1007/s11785-011-0131-8
Reference: [11] Min, K., Jinyuan, D.: On integral representation of spherical $k$–regular functions in Clifford analysis.Adv. Appl. Clifford Algebras 19 (1) (2009), 83–100. MR 2485699, 10.1007/s00006-008-0067-x
Reference: [12] Min, K., Khäler, U.: Riemann boundary value problems on the half space in Clifford analysis.Math. Methods Appl. Sci. (2012), doi:10.1002/mma.2557. MR 3021423
Reference: [13] Min, K., Khäler, U., Daoshun, W.: Riemann boundary value problems on the sphere in Clifford analysis.Adv. Appl. Clifford Algebras 22 (2) (2012), 365–390. MR 2930700, 10.1007/s00006-011-0308-2
Reference: [14] Sprössig, W.: On generalized Vekua–type problems.Adv. Appl. Clifford Algebras 11 (2001), 77–92. Zbl 1221.30118, MR 2106712, 10.1007/BF03042210
Reference: [15] Vekua, I. N.: Generalized Analytic Functions.Pergamon Press, London, 1962. Zbl 0127.03505, MR 0150320
Reference: [16] Yafang, G., Tao, Q., Jinyuan, D.: Structure of solutions of polynomial Dirac equations in Clifford analysis.Complex Variables Theory Appl. 49 (1) (2004), 15–21. 10.1080/02781070310001634593
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_7.pdf 523.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo