Title:
|
Yamabe operator via BGG sequences (English) |
Author:
|
Tuček, Vít |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
48 |
Issue:
|
5 |
Year:
|
2012 |
Pages:
|
411-422 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that the conformally invariant Yamabe operator on a complex conformal manifold can be constructed as a first BGG operator by inducing from certain infinite-dimensional representation. (English) |
Keyword:
|
Bernstein-Gelfand-Gelfand resolution |
Keyword:
|
Cartan connection |
Keyword:
|
parabolic geometry |
Keyword:
|
Yamabe operator |
MSC:
|
53A30 |
MSC:
|
53A55 |
MSC:
|
58J10 |
idMR:
|
MR3007622 |
DOI:
|
10.5817/AM2012-5-411 |
. |
Date available:
|
2012-12-17T14:05:45Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/143115 |
. |
Reference:
|
[1] Calderbank, D. M. J., Diemer, T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences.J. Reine Angew. Math. 537 (2001), 67–103. Zbl 0985.58002, MR 1856258 |
Reference:
|
[2] Cap, A., Gover, A. R, Hammerl, M.: Projective BGG equations, algebraic sets, and compactifications of Einstein geometries.arXiv:1005.2246, May 2010. |
Reference:
|
[3] Čap, A., Slovák, J.: Parabolic geometries. I.Math. Surveys Monogr., American Mathematical Society, 2009. Zbl 1183.53002, MR 2532439 |
Reference:
|
[4] Čap, A., Slovák, J., Souček, V.: Bernstein–Gelfand–Gelfand Sequences.Ann. of Math. (2) 154 (1) (2001), 97–113. Zbl 1159.58309, MR 1847589, 10.2307/3062111 |
Reference:
|
[5] Davidson, M. G., Enright, T. J., Stanke, R. J.: Differential operators and highest weight representations.Mem. Amer. Math. Soc. 94 (455) (1991), iv+102. Zbl 0759.22015, MR 1081660 |
Reference:
|
[6] Enright, T., Howe, R., Wallach, N.: A classification of unitary highest weight modules.Representation theory of reductive groups (Park City, Utah, 1982), Birkhäuser Boston, 1983. Zbl 0535.22012, MR 0733809 |
Reference:
|
[7] Enright, T. J.: Analogues of Kostant’s $\mathfrak{u}$–cohomology formulas for unitary highest weight modules.392 (1988), 27–36. MR 0965055 |
Reference:
|
[8] Gover, A. R., Hirachi, K.: Conformally invariant powers of the Laplacian – A complete nonexistence theorem.J. Amer. Math. Soc. 17 (2004), 389–405. Zbl 1066.53037, MR 2051616, 10.1090/S0894-0347-04-00450-3 |
Reference:
|
[9] Graham, C. R.: Conformally invariant powers of the Laplacian. II. Nonexistence.J. London Math. Soc. (2) 46 (3) (1992), 566–576. Zbl 0726.53011, MR 1190439, 10.1112/jlms/s2-46.3.566 |
Reference:
|
[10] Huang, Jing–Song, Pandžič, P., Renard, D.: Dirac operators and Lie algebra cohomology.Represent. Theory 10 (2006), 299–313. Zbl 1134.22011, MR 2240703, 10.1090/S1088-4165-06-00267-6 |
Reference:
|
[11] Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil Theorem.Ann. of Math. (2) 74 (1961), 329–387. Zbl 0134.03501, MR 0142696, 10.2307/1970237 |
Reference:
|
[12] Pandžič, P.: Dirac operators on Weil representations II.Math. Commun. 15 (2) (2010), 411–424. Zbl 1207.22009, MR 2814264 |
Reference:
|
[13] Vogan, D. A., Jr., : Unitary representations and complex analysis.Representation theory and complex analysis, Lecture Notes in Math., vol. 1931, Springer, Berlin, 2008, pp. 259–344. Zbl 1143.22002, MR 2409701 |
. |