Previous |  Up |  Next

Article

Title: Poisson–Lie sigma models on Drinfel’d double (English)
Author: Vysoký, Jan
Author: Hlavatý, Ladislav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 48
Issue: 5
Year: 2012
Pages: 423-447
Summary lang: English
.
Category: math
.
Summary: Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle. The elegant form of equations of motion for so called Poisson-Lie groups is derived. Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras. Using the adjoint representation of Lie group and Drinfel’d double we show that Poisson-Lie group can be constructed for general Lie bialgebra. (English)
Keyword: Poisson sigma models
Keyword: Poisson manifolds
Keyword: Poisson-Lie groups
Keyword: bundle maps
MSC: 53D17
MSC: 70G45
idMR: MR3007623
DOI: 10.5817/AM2012-5-423
.
Date available: 2012-12-17T14:06:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/143116
.
Reference: [1] Bojowald, M., Kotov, A., Strobl, T.: Lie algebroid morphisms, Poisson Sigma Models, and off-shell closed gauge symmetries.J. Geom. Phys. 54 (2005), 400–426. Zbl 1076.53102, MR 2144710, 10.1016/j.geomphys.2004.11.002
Reference: [2] Calvo, I.: Poisson sigma models on surfaces with boundary: Classical and quantum aspects.Ph.D. thesis, University of Zaragoza, 2006.
Reference: [3] Calvo, I., Falceto, F., García–Álvarez, D.: Topological Poisson sigma models on Poisson–Lie groups.JHEP, 0310 (033), 2003. MR 2030758
Reference: [4] Dufour, J–P., Zung, N. T.: Poisson Structures and Their Normal Forms.Progr. Math., vol. 242, Birkhäuser Verlag, 2005. Zbl 1082.53078, MR 2178041
Reference: [5] Klimčík, C.: Yang–Baxter $\sigma $–models and $d{S}/{A}d{S}$ T–Duality.JHEP, 0212 (051), 2002.
Reference: [6] Klimčík, C., Ševera, P.: T–duality and the moment map.hep-th/9610198. Zbl 0924.58132
Reference: [7] Klimčík, C., Ševera, P.: Poisson–Lie T–duality and loops of Drinfeld doubles.Phys. Lett. B 375 (1996), 65–71.
Reference: [8] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions.J. Differential Geom. 31 (1990), 501–526. Zbl 0673.58018, MR 1037412
Reference: [9] Nakahara, M.: Geometry, Topology and Physics.Taylor & Francis, 2003. Zbl 1090.53001, MR 2001829
Reference: [10] Schaller, P., Strobl, T.: Poisson–Sigma–Models: A generalization of 2–D gravity Yang–Mills–systems.hep-th/9411163.
Reference: [11] Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories.Mod. Phys. Lett. A9 (1994), 3129–3136. Zbl 1015.81574, MR 1303989, 10.1142/S0217732394002951
Reference: [12] Steenrod, N.: The Topology of Fibre Bundles.Princeton University Press, 1951. Zbl 0054.07103, MR 0039258
Reference: [13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds.Progr. Math., vol. 118, Birkhäuser Verlag, 2005. MR 1269545
.

Files

Files Size Format View
ArchMathRetro_048-2012-5_11.pdf 604.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo