Previous |  Up |  Next


Poisson sigma models; Poisson manifolds; Poisson-Lie groups; bundle maps
Poisson sigma models represent an interesting use of Poisson manifolds for the construction of a classical field theory. Their definition in the language of fibre bundles is shown and the corresponding field equations are derived using a coordinate independent variational principle. The elegant form of equations of motion for so called Poisson-Lie groups is derived. Construction of the Poisson-Lie group corresponding to a given Lie bialgebra is widely known only for coboundary Lie bialgebras. Using the adjoint representation of Lie group and Drinfel’d double we show that Poisson-Lie group can be constructed for general Lie bialgebra.
[1] Bojowald, M., Kotov, A., Strobl, T.: Lie algebroid morphisms, Poisson Sigma Models, and off-shell closed gauge symmetries. J. Geom. Phys. 54 (2005), 400–426. DOI 10.1016/j.geomphys.2004.11.002 | MR 2144710 | Zbl 1076.53102
[2] Calvo, I.: Poisson sigma models on surfaces with boundary: Classical and quantum aspects. Ph.D. thesis, University of Zaragoza, 2006.
[3] Calvo, I., Falceto, F., García–Álvarez, D.: Topological Poisson sigma models on Poisson–Lie groups. JHEP, 0310 (033), 2003. MR 2030758
[4] Dufour, J–P., Zung, N. T.: Poisson Structures and Their Normal Forms. Progr. Math., vol. 242, Birkhäuser Verlag, 2005. MR 2178041 | Zbl 1082.53078
[5] Klimčík, C.: Yang–Baxter $\sigma $–models and $d{S}/{A}d{S}$ T–Duality. JHEP, 0212 (051), 2002.
[6] Klimčík, C., Ševera, P.: T–duality and the moment map. hep-th/9610198. Zbl 0924.58132
[7] Klimčík, C., Ševera, P.: Poisson–Lie T–duality and loops of Drinfeld doubles. Phys. Lett. B 375 (1996), 65–71.
[8] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions. J. Differential Geom. 31 (1990), 501–526. MR 1037412 | Zbl 0673.58018
[9] Nakahara, M.: Geometry, Topology and Physics. Taylor & Francis, 2003. MR 2001829 | Zbl 1090.53001
[10] Schaller, P., Strobl, T.: Poisson–Sigma–Models: A generalization of 2–D gravity Yang–Mills–systems. hep-th/9411163.
[11] Schaller, P., Strobl, T.: Poisson structure induced (topological) field theories. Mod. Phys. Lett. A9 (1994), 3129–3136. DOI 10.1142/S0217732394002951 | MR 1303989 | Zbl 1015.81574
[12] Steenrod, N.: The Topology of Fibre Bundles. Princeton University Press, 1951. MR 0039258 | Zbl 0054.07103
[13] Vaisman, I.: Lectures on the Geometry of Poisson Manifolds. Progr. Math., vol. 118, Birkhäuser Verlag, 2005. MR 1269545
Partner of
EuDML logo