Previous |  Up |  Next

Article

Keywords:
impulsive evolution equations; stabilization; stable manifolds; singularly perturbed problems
Summary:
In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value problem for impulsive parabolic equations is illustrated to our theory results.
References:
[1] Abada, N., Benchohra, M., Hammouche, H.: Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions. J. Differential Equations 246 (2009), 3834-3863. DOI 10.1016/j.jde.2009.03.004 | MR 2514728 | Zbl 1171.34052
[2] Ahmed, N. U.: Existence of optimal controls for a general class of impulsive systems on Banach space. SIAM J. Control Optim. 42 (2003), 669-685. DOI 10.1137/S0363012901391299 | MR 1982287
[3] Ahmed, N. U., Teo, K. L., Hou, S. H.: Nonlinear impulsive systems on infinite dimensional spaces. Nonlinear Anal. 54 (2003), 907-925. DOI 10.1016/S0362-546X(03)00117-2 | MR 1992511 | Zbl 1030.34056
[4] Benchohra, M., Henderson, J., Ntouyas, S. K.: Impulsive differential equations and inclusions. In: Contemporary Mathematics and Its Applications, Vol. 2, Hindawi Publishing Corporation, New York 2006. MR 2322133 | Zbl 1130.34003
[5] Bounit, H., Hammouri, H.: Stabilization of infinite-dimensional semilinear systems with dissipative drift. Appl. Math. Optim. 37 (1998), 225-242. DOI 10.1007/s002459900075 | MR 1489316 | Zbl 1041.93553
[6] Chang, Y. K., Nieto, J. J.: Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators. Numer. Funct. Anal. Optim. 30 (2009), 227-244. DOI 10.1080/01630560902841146 | MR 2514215 | Zbl 1176.34096
[7] Dvirnyĭ, A. I., Slyn'ko, V. I.: Stability of solutions to impulsive differential equations in critical cases. Sibirsk. Mat. Zh. 52 (2011), 70-80. MR 2810251
[8] Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258 (2010), 1709-1727. DOI 10.1016/j.jfa.2009.10.023 | MR 2566317 | Zbl 1193.35099
[9] Hernández, E., Rabello, M., Henríquez, H. R.: Existence of solutions for impulsive partial neutral functional differential equations. J. Math. Anal. Appl. 331 (2007), 1135-1158. DOI 10.1016/j.jmaa.2006.09.043 | MR 2313705
[10] Koliha, J. J., Straškraba, I.: Stability in nonlinear evolution problems by means of fixed point theorem. Comment. Math. Univ. Carolin. 38 (1997), 37-59. MR 1455469
[11] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations. World Scientific, Singapore - London 1989. MR 1082551 | Zbl 0719.34002
[12] Liang, J., Liu, J. H., Xiao, T.-J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49 (2009), 798-804. DOI 10.1016/j.mcm.2008.05.046 | MR 2483682 | Zbl 1173.34048
[13] Liu, J.: Nonlinear impulsive evolution equations. Dynamic Contin. Discrete Impuls. Syst. 6 (1999), 77-85. MR 1679758 | Zbl 0932.34067
[14] Lü, J., Chen, G.: Generating multiscroll Chaotic attractors: Theories, Methods and Applications. Internat. J. Bifurcation and Chaos 16 (2006), 775-858. DOI 10.1142/S0218127406015179 | MR 2234259
[15] Lü, J., Han, F., Yu, X., Chen, G.: Generating 3-D multi-scroll chaotic attractors: A hysteresis series switching method. Automatica 40 (2004), 1677-1687. DOI 10.1016/j.automatica.2004.06.001 | MR 2155461 | Zbl 1162.93353
[16] Wang, J., Dong, X., Zhou, Y.: Existence, attractiveness and stability of solutions for quadratic Urysohn fractional integral equations. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 545-554. DOI 10.1016/j.cnsns.2011.05.034 | MR 2834413
[17] Wang, J., Dong, X., Zhou, Y.: Analysis of nonlinear integral equations with Erdélyi-Kober fractional operator. Comm. Nonlinear Sci. Numer. Simul. 17 (2012), 3129-3139. DOI 10.1016/j.cnsns.2011.12.002 | MR 2834413
[18] Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 58 (2010), 379-397. DOI 10.1007/s00025-010-0057-x | MR 2728164 | Zbl 1209.34095
[19] Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equation of mixed type and optimal controls. Optimization 55 (2006), 141-156. DOI 10.1080/02331930500530401 | MR 2221729
[20] Wang, J., Xiang, X., Peng, Y.: Periodic solutions of semilinear impulsive periodic system on Banach space. Nonlinear Anal. 71 (2009), e1344-e1353. DOI 10.1016/j.na.2009.01.139 | MR 2671921 | Zbl 1238.34079
[21] Wei, W., Hou, S., Teo, K. L.: On a class of strongly nonlinear impulsive differential equation with time delay. Nonlinear Dyn. Syst. Theory 6 (2006), 281-293. MR 2264177 | Zbl 1114.47067
[22] Xiang, X., Wei, W., Jiang, Y.: Strongly nonlinear impulsive system and necessary conditions of optimality. Dyn. Cont. Discrete Impuls. Syst. 12 (2005), 811-824. MR 2178682 | Zbl 1081.49027
[23] Xu, D., Yang, Z., Yang, Z.: Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Anal. 67 (2007), 1426-1439. DOI 10.1016/j.na.2006.07.043 | MR 2323290 | Zbl 1122.34063
[24] Yang, T.: Impulsive Control Theory. Springer-Verlag, Berlin - Heidelberg 2001. MR 1850661 | Zbl 0996.93003
[25] Yang, Z., Xu, D.: Stability analysis and design of impulsive control system with time delay. IEEE Trans. Automat. Control 52 (2007), 1148-1154. DOI 10.1109/TAC.2007.902748 | MR 2342720
[26] Yu, X., Xiang, X., Wei, W.: Solution bundle for class of impulsive differential inclusions on Banach spaces. J. Math. Anal. Appl. 327 (2007), 220-232. DOI 10.1016/j.jmaa.2006.03.075 | MR 2277406
[27] Zhang, Y., Sun, J.: Strict stability of impulsive functional differential equations. J. Math. Anal. Appl. 301 (2005), 237-248. DOI 10.1016/j.jmaa.2004.07.018 | MR 2105932 | Zbl 1068.34073
Partner of
EuDML logo