Previous |  Up |  Next

Article

Keywords:
non-conforming grid; nonstationary heat equation; several space dimension; SUSHI scheme; implicit scheme; discrete gradient
Summary:
A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. We derive error estimates in discrete norms $\Bbb L^{\infty }(0,T;H^1_0(\Omega ))$ and ${\Cal W}^{1,\infty }(0,T;L^2(\Omega ))$, and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition.
References:
[1] Bradji, A., Fuhrmann, J.: Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids. C. R. Math. Acad. Sci. Paris 348 (2010), 1119-1122. DOI 10.1016/j.crma.2010.09.020 | MR 2735020 | Zbl 1201.65167
[2] Bradji, A., Fuhrmann, J.: Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes. NMA 2010, LNCS 6046 (2011) 269-276 I. Domov, S. Dimova, N. Kolkovska Springer Berlin (2011).
[3] Bradji, A.: Some simple error estimates for finite volume approximation of parabolic equations. C. R. Math. Acad. Sci. Paris 346 (2008), 571-574. DOI 10.1016/j.crma.2008.03.023 | MR 2412799
[4] Bradji, A., Fuhrmann, J.: Some error estimates in finite volume method for parabolic equations. Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. R. Eymard, J.-M. Hérard John Wiley & Sons (2008), 233-240. MR 2451412
[5] Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods. IMA J. Numer. Anal. 28 (2008), 469-495. DOI 10.1093/imanum/drm030 | MR 2433209 | Zbl 1144.78024
[6] Brézis, H.: Analyse Fonctionnelle: Théorie et Applications. Mason Paris (1994), French. MR 0697382 | Zbl 1147.46300
[7] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.: Parabolic finite volume element equations in nonconvex polygonal domains. Numer. Methods Partial Differ. Equ. 25 (2009), 507-525. DOI 10.1002/num.20351 | MR 2510745 | Zbl 1168.65051
[8] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.: Error estimates for a finite volume element method for parabolic equations on convex polygonal domain. Numer. Methods Partial Differ. Equ. 20 (2004), 650-674. DOI 10.1002/num.20006 | MR 2076342
[9] Ciarlet, P. G.: Basic error estimates for elliptic problems. Handbook of Numerical Analysis, Vol. II P. G. Ciarlet, J.-L. Lions North-Holland Amsterdam (1991), 17-352. DOI 10.1016/S1570-8659(05)80039-0 | MR 1115237 | Zbl 0875.65086
[10] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal $L^\infty(L^2)$-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem. IMA J. Numer. Anal. 28 (2008), 496-521. DOI 10.1093/imanum/drm023 | MR 2433210 | Zbl 1158.65067
[11] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Am. Math. Soc. Providence (1998).
[12] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010), 1009-1043. DOI 10.1093/imanum/drn084 | MR 2727814 | Zbl 1202.65144
[13] Eymard, R., Gallouët, T., Herbin, R.: Cell centered discretization of non linear elliptic problems on general multidimensional polyhedral grids. J. Numer. Math. 17 (2009), 173-193. DOI 10.1515/JNUM.2009.010 | MR 2573566
[14] Eymard, R., Gallouët, T., Herbin, R.: A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007), 403-406. DOI 10.1016/j.crma.2007.01.024 | MR 2310678 | Zbl 1112.65120
[15] Eymard, R., Gallouët, T., Herbin, R.: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006), 326-353. DOI 10.1093/imanum/dri036 | MR 2218636 | Zbl 1093.65110
[16] Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII. P. G. Ciarlet, J.-L. Lions North-Holland/Elsevier Amsterdam (2000), 713-1020. MR 1804748
[17] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press Oxford (2003). MR 2261900
[18] Gallouët, T., Herbin, R., Vignal, M. H.: Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions. SIAM J. Numer. Anal. 37 (2000), 1935-1972. DOI 10.1137/S0036142999351388 | MR 1766855
[19] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edition. Springer Berlin (2006). MR 2249024
Partner of
EuDML logo