Previous |  Up |  Next

Article

Title: Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes (English)
Author: Bradji, Abdallah
Author: Fuhrmann, Jürgen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 1
Year: 2013
Pages: 1-38
Summary lang: English
.
Category: math
.
Summary: A general class of nonconforming meshes has been recently studied for stationary anisotropic heterogeneous diffusion problems, see Eymard et al. (IMA J. Numer. Anal. 30 (2010), 1009–1043). Thanks to the basic ideas developed in the stated reference for stationary problems, we derive a new discretization scheme in order to approximate the nonstationary heat problem. The unknowns of this scheme are the values at the centre of the control volumes, at some internal interfaces, and at the mesh points of the time discretization. We derive error estimates in discrete norms $\Bbb L^{\infty }(0,T;H^1_0(\Omega ))$ and ${\Cal W}^{1,\infty }(0,T;L^2(\Omega ))$, and an error estimate for an approximation of the gradient, in a general framework in which the discrete bilinear form involved in the finite volume scheme satisfies some ellipticity condition. (English)
Keyword: non-conforming grid
Keyword: nonstationary heat equation
Keyword: several space dimension
Keyword: SUSHI scheme
Keyword: implicit scheme
Keyword: discrete gradient
MSC: 35K15
MSC: 65M08
MSC: 65M15
MSC: 65M50
idZBL: Zbl 1274.65251
idMR: MR3022767
DOI: 10.1007/s10492-013-0001-y
.
Date available: 2013-01-23T10:09:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143131
.
Reference: [1] Bradji, A., Fuhrmann, J.: Error estimates of the discretization of linear parabolic equations on general nonconforming spatial grids.C. R. Math. Acad. Sci. Paris 348 (2010), 1119-1122. Zbl 1201.65167, MR 2735020, 10.1016/j.crma.2010.09.020
Reference: [2] Bradji, A., Fuhrmann, J.: Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes.NMA 2010, LNCS 6046 (2011) 269-276 I. Domov, S. Dimova, N. Kolkovska Springer Berlin (2011). MR 2794714
Reference: [3] Bradji, A.: Some simple error estimates for finite volume approximation of parabolic equations.C. R. Math. Acad. Sci. Paris 346 (2008), 571-574. MR 2412799, 10.1016/j.crma.2008.03.023
Reference: [4] Bradji, A., Fuhrmann, J.: Some error estimates in finite volume method for parabolic equations.Finite Volumes for Complex Applications V. Proc. 5th Int. Symp. R. Eymard, J.-M. Hérard John Wiley & Sons (2008), 233-240. MR 2451412
Reference: [5] Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite-element and finite-volume methods.IMA J. Numer. Anal. 28 (2008), 469-495. Zbl 1144.78024, MR 2433209, 10.1093/imanum/drm030
Reference: [6] Brézis, H.: Analyse Fonctionnelle: Théorie et Applications.Mason Paris (1994), French. Zbl 1147.46300, MR 0697382
Reference: [7] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.: Parabolic finite volume element equations in nonconvex polygonal domains.Numer. Methods Partial Differ. Equ. 25 (2009), 507-525. Zbl 1168.65051, MR 2510745, 10.1002/num.20351
Reference: [8] Chatzipantelidis, P., Lazarov, R. D., Thomée, V.: Error estimates for a finite volume element method for parabolic equations on convex polygonal domain.Numer. Methods Partial Differ. Equ. 20 (2004), 650-674. MR 2076342, 10.1002/num.20006
Reference: [9] Ciarlet, P. G.: Basic error estimates for elliptic problems.Handbook of Numerical Analysis, Vol. II P. G. Ciarlet, J.-L. Lions North-Holland Amsterdam (1991), 17-352. Zbl 0875.65086, MR 1115237, 10.1016/S1570-8659(05)80039-0
Reference: [10] Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal $L^\infty(L^2)$-error estimate for the discontinuous Galerkin approximation of a nonlinear non-stationary convection-diffusion problem.IMA J. Numer. Anal. 28 (2008), 496-521. Zbl 1158.65067, MR 2433210, 10.1093/imanum/drm023
Reference: [11] Evans, L. C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19.Am. Math. Soc. Providence (1998).
Reference: [12] Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: A scheme using stabilization and hybrid interfaces.IMA J. Numer. Anal. 30 (2010), 1009-1043. Zbl 1202.65144, MR 2727814, 10.1093/imanum/drn084
Reference: [13] Eymard, R., Gallouët, T., Herbin, R.: Cell centered discretization of non linear elliptic problems on general multidimensional polyhedral grids.J. Numer. Math. 17 (2009), 173-193. MR 2573566, 10.1515/JNUM.2009.010
Reference: [14] Eymard, R., Gallouët, T., Herbin, R.: A new finite volume scheme for anisotropic diffusion problems on general grids: Convergence analysis.C. R. Math. Acad. Sci. Paris 344 (2007), 403-406. Zbl 1112.65120, MR 2310678, 10.1016/j.crma.2007.01.024
Reference: [15] Eymard, R., Gallouët, T., Herbin, R.: A cell-centred finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension.IMA J. Numer. Anal. 26 (2006), 326-353. Zbl 1093.65110, MR 2218636, 10.1093/imanum/dri036
Reference: [16] Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII.P. G. Ciarlet, J.-L. Lions North-Holland/Elsevier Amsterdam (2000), 713-1020. MR 1804748
Reference: [17] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation.Oxford University Press Oxford (2003). MR 2261900
Reference: [18] Gallouët, T., Herbin, R., Vignal, M. H.: Error estimates for the approximate finite volume solution of convection diffusion equations with general boundary conditions.SIAM J. Numer. Anal. 37 (2000), 1935-1972. MR 1766855, 10.1137/S0036142999351388
Reference: [19] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edition.Springer Berlin (2006). MR 2249024
.

Files

Files Size Format View
AplMat_58-2013-1_1.pdf 427.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo