Previous |  Up |  Next

Article

Title: Periodic solutions for some nonautonomous $p(t)$-Laplacian Hamiltonian systems (English)
Author: Zhang, Liang
Author: Tang, X. H.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 1
Year: 2013
Pages: 39-61
Summary lang: English
.
Category: math
.
Summary: In this paper, we deal with the existence of periodic solutions of the $p(t)$-Laplacian Hamiltonian system $$ \begin {cases} \dfrac {{\rm d}}{{\rm d}t}(|\dot {u}(t)|^{p(t)-2}\dot {u}(t)) =\nabla F(t,u(t))\quad \text {a.e.} \ t\in [0,T] ,\\ u(0)-u(T)=\dot {u}(0)-\dot {u}(T)=0. \end {cases} $$ Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems. (English)
Keyword: periodic solution
Keyword: Hamiltonian system
Keyword: $p(t)$-Laplacian system
Keyword: critical point
Keyword: minimax principle
Keyword: least action principle
MSC: 34C25
MSC: 37J45
MSC: 58E50
idZBL: Zbl 1274.34129
idMR: MR3022768
DOI: 10.1007/s10492-013-0002-x
.
Date available: 2013-01-23T10:11:43Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143134
.
Reference: [1] Berger, M. S., Schechter, M.: On the solvability of semilinear gradient operator equations.Adv. Math. 25 (1977), 97-132. Zbl 0354.47025, MR 0500336, 10.1016/0001-8708(77)90001-9
Reference: [2] Fan, X.-L., Fan, X.: A Knobloch-type result for $p(t)$-Laplacian systems.J. Math. Anal. Appl. 282 (2003), 453-464. Zbl 1033.34023, MR 1989103, 10.1016/S0022-247X(02)00376-1
Reference: [3] Fan, X.-L., Zhao, D.: On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$.J. Math. Anal. Appl. 263 (2001), 424-446. Zbl 1028.46041, MR 1866056
Reference: [4] Fan, X.-L., Zhang, Q.-H.: Existence of solutions for $p(x)$-Laplacian Dirichlet problem.Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843-1852. Zbl 1146.35353, MR 1954585, 10.1016/S0362-546X(02)00150-5
Reference: [5] Fei, G.-H.: On periodic solutions of superquadratic Hamiltonian systems.Electron. J. Differ. Equ., paper No. 8 (2002), 1-12. Zbl 0999.37039, MR 1884977
Reference: [6] Feng, J.-X., Han, Z.-Q.: Periodic solutions to differential systems with unbounded or periodic nonlinearities.J. Math. Anal. Appl. 323 (2006), 1264-1278. Zbl 1109.34032, MR 2260179, 10.1016/j.jmaa.2005.11.039
Reference: [7] Jiang, Q., Tang, C. L.: Periodic and subharmonic solutions of a class of subquadratic Hamiltonian systems.J. Math. Anal. Appl. 328 (2007), 380-389. MR 2285556, 10.1016/j.jmaa.2006.05.064
Reference: [8] Li, S.-J., Willem, M.: Applications of local linking to critical point theory.J. Math. Anal. Appl. 189 (1995), 6-32. Zbl 0820.58012, MR 1312028, 10.1006/jmaa.1995.1002
Reference: [9] Liu, J. Q.: A generalized saddle point theorem.J. Differ. Equations 82 (1989), 372-385. Zbl 0682.34032, MR 1027975, 10.1016/0022-0396(89)90139-3
Reference: [10] Ma, S., Zhang, Y.: Existence of infinitely many periodic solutions for ordinary $p$-Laplacian systems.J. Math. Anal. Appl. 351 (2009), 469-479. Zbl 1153.37009, MR 2472958, 10.1016/j.jmaa.2008.10.027
Reference: [11] Mawhin, J.: Semi-coercive monotone variational problems.Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. Zbl 0647.49007, MR 0938142
Reference: [12] Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems.Applied Mathematical Sciences, Vol. 74 Springer New York (1989). Zbl 0676.58017, MR 0982267, 10.1007/978-1-4757-2061-7
Reference: [13] Rabinowitz, P. H.: Periodic solutions of Hamiltonian systems.Comm. Pure Appl. Math. 31 (1978), 157-184. Zbl 0358.70014, MR 0467823, 10.1002/cpa.3160310203
Reference: [14] Rabinowitz, P. H.: On subharmonic solutions of Hamiltonian systems.Commun. Pure Appl. Math. 33 (1980), 609-633. Zbl 0425.34024, MR 0586414, 10.1002/cpa.3160330504
Reference: [15] Tang, C.-L.: Periodic solutions of non-autonomous second order systems with $\gamma$-quasisubadditive potential.J. Math. Anal. Appl. 189 (1995), 671-675. Zbl 0824.34043, MR 1312546, 10.1006/jmaa.1995.1044
Reference: [16] Tang, C.-L.: Periodic solutions of non-autonomous second order systems with sublinear nonlinearity.Proc. Am. Math. Soc. 126 (1998), 3263-3270. MR 1476396, 10.1090/S0002-9939-98-04706-6
Reference: [17] Tang, C.-L., Wu, X.-P.: Periodic solutions for second order systems with not uniformly coercive potential.J. Math. Anal. Appl. 259 (2001), 386-397. Zbl 0999.34039, MR 1842066, 10.1006/jmaa.2000.7401
Reference: [18] Tang, C.-L., Wu, X.-P.: Notes on periodic solutions of subquadratic second order systems.J. Math. Anal. Appl. 285 (2003), 8-16. Zbl 1054.34075, MR 2000135, 10.1016/S0022-247X(02)00417-1
Reference: [19] Tang, C.-L., Wu, X.-P.: A note on periodic solutions of nonautonomous second order systems.Proc. Am. Math. Soc. 132 (2004), 1295-1303. Zbl 1055.34084, MR 2053333, 10.1090/S0002-9939-03-07185-5
Reference: [20] Tao, Z.-L., Tang, C.-L.: Periodic and subharmonic solutions of second order Hamiltonian systems.J. Math. Anal. Appl. 293 (2004), 435-445. Zbl 1042.37047, MR 2053889, 10.1016/j.jmaa.2003.11.007
Reference: [21] Wang, X.-J., Yuan, R.: Existence of periodic solutions for $p(t)$-Laplacian systems.Nonlinear Anal., Theory Methods Appl. 70 (2009), 866-880. Zbl 1171.34030, MR 2468426, 10.1016/j.na.2008.01.017
Reference: [22] Willem, M.: Oscillations forcées de systèms hamiltoniens. Sémin. Anal. Non Linéaire.Univ. Besancon (1981).
Reference: [23] Wu, X.-P.: Periodic solutions for nonautonomous second-order systems with bounded nonlinearity.J. Math. Anal. Appl. 230 (1999), 135-141. Zbl 0922.34039, MR 1669593, 10.1006/jmaa.1998.6181
Reference: [24] Wu, X.-P., Tang, C.-L.: Periodic solutions of a class of non-autonomous second-order systems.J. Math. Anal. Appl. 236 (1999), 227-235. Zbl 0971.34027, MR 1704579, 10.1006/jmaa.1999.6408
Reference: [25] Xu, B., Tang, C.-L.: Some existence results on periodic solutions of ordinary $p$-Laplacian systems.J. Math. Anal. Appl. 333 (2007), 1228-1236. Zbl 1154.34331, MR 2331727, 10.1016/j.jmaa.2006.11.051
Reference: [26] Ye, Y.-W., Tang, C.-L.: Periodic solutions for some nonautonomous second order Hamiltonian systems.J. Math. Anal. Appl. 344 (2008), 462-471. Zbl 1142.37023, MR 2416320, 10.1016/j.jmaa.2008.03.021
Reference: [27] Zhikov, V. V.: Averaging of functionals in the calculus of variations and elasticity theory.Math. USSR, Izv. 29 (1987), 33-66. 10.1070/IM1987v029n01ABEH000958
Reference: [28] Zhikov, V. V.: On passage to the limit in nonlinear variational problems.Suss. Acad. Sci, Sb., Math. 183 (1992), 47-84. Zbl 0791.35036, MR 1187249
.

Files

Files Size Format View
AplMat_58-2013-1_2.pdf 311.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo