Previous |  Up |  Next

Article

Title: The principle of stationary action in the calculus of variations (English)
Author: López, Emanuel
Author: Molgado, Alberto
Author: Vallejo, José A.
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 2
Year: 2012
Pages: 89-116
Summary lang: English
.
Category: math
.
Summary: We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models is possible. We present specific models arising in modern physical theories in order to make clear the ideas here exposed. (English)
Keyword: stationary action
Keyword: functional extrema
Keyword: conjugate points
Keyword: oscillatory solutions
Keyword: Lane-Emden equations
MSC: 34K11
MSC: 49K15
MSC: 49S05
idZBL: Zbl 06165038
idMR: MR3032807
.
Date available: 2013-01-28T10:45:15Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143142
.
Reference: [1] Adams, R. A.: Sobolev spaces.1978, Academic Press, Zbl 0347.46040
Reference: [2] Agarwal, R. P., O'Regan, D.: An introduction to ordinary differential equations.2008, Springer Verlag, Zbl 1158.34001, MR 2439721
Reference: [3] Baez, J. C.: Spin foam models.Class. Quant. Grav., 15, 1998, 1827-1858, Zbl 0932.83014, MR 1633142, 10.1088/0264-9381/15/7/004
Reference: [4] Baker, L. M., Fairlie, D. B.: Hamilton-Jacobi equations and Brane associated Lagrangians.Nucl. Phys. B, 596, 2001, 348-364, Zbl 0972.81146, MR 1814256, 10.1016/S0550-3213(00)00703-3
Reference: [5] Basdevant, J. L.: Variational principles in Physics.2010, Springer, MR 2285636
Reference: [6] Berezin, V.: Square-root quantization: application to quantum black holes.Nucl. Phys. Proc. Suppl., 57, 1997, 181-183, Zbl 0976.83531, MR 1480197, 10.1016/S0920-5632(97)00370-8
Reference: [7] Binney, J., Tremain, S.: Galactic dynamics.1994, Princeton University Press,
Reference: [8] Buck, B., (eds), V. A. Macaulay: Maximum Entropy in Action: A Collection of Expository Essays.1991, Oxford University Press,
Reference: [9] Burghes, D. N., Graham, A.: Introduction to Control Theory, Including Optimal Control.1980, Wiley, Zbl 0428.93001, MR 0583584
Reference: [10] Carlini, A., Frolov, V. P., Mensky, M. B., Novikov, I. D., Soleng, H. H.: Time machines: the Principle of Self-Consistency as a consequence of the Principle of Minimal Action.Int. J. Mod. Phys. D, 4, 1995, 557-580, MR 1363650, 10.1142/S0218271895000399
Reference: [11] Carlini, A., Greensite, J.: Square Root Actions, Metric Signature, and the Path-Integral of Quantum Gravity.Phys. Rev. D, 52, 1995, 6947-6964, MR 1375862, 10.1103/PhysRevD.52.6947
Reference: [12] Carlip, S.: $(2+1)$-Dimensional Chern-Simons Gravity as a Dirac Square Root.Phys. Rev. D, 45, 1992, 3584-3590, Erratum-ibid D47 (1993) 1729. MR 1163107, 10.1103/PhysRevD.45.3584
Reference: [13] Chandrasekhar, S.: An Introduction to the Study of Stellar Structure.1967, Dover publications, MR 0092663
Reference: [14] Coffman, C. V., Wong, J. S. V.: Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations.Transactions of the AMS, 167, 1972, 399-434, Zbl 0278.34026, MR 0296413, 10.1090/S0002-9947-1972-0296413-9
Reference: [15] Collins, G. W.: The fundamentals of stellar astrophysics.1989, Freeman,
Reference: [16] Curtain, R. F., Pritchard, A. J.: Functional analysis in modern applied mathematics.1977, Academic Press, Zbl 0448.46002, MR 0479787
Reference: [17] Emden, R.: Gaskugeln, Anwendungen der mechanischen Warmen-theorie auf Kosmologie und meteorologische Probleme.1907, B. G. Teubner,
Reference: [18] Fiziev, P. P.: Relativistic Hamiltonian with square root in the path integral formalism.Theor. Math. Phys., 62, 2, 1985, 123-130, MR 0783051, 10.1007/BF01033521
Reference: [19] Flett, T. M.: Differential analysis.1980, Cambridge University Press, Zbl 0442.34002, MR 0561908
Reference: [20] Fowler, R. H.: Some results on the form near infinity of real continuous solutions of a certain type of second order differential equations.Proc. London Math. Soc., 13, 1914, 341-371, MR 1577508
Reference: [21] Fowler, R. H.: The form near infinity of real, continuous solutions of a certain differential equation of the second order.Quart. J. Math., 45, 1914, 289-350,
Reference: [22] Fowler, R. H.: The solution of Emden's and similar differential equations.Monthly Notices Roy. Astro. Soc., 91, 1930, 63-91,
Reference: [23] Fowler, R. H.: Further studies of Emden's and similar differential equations.Quart. J. Math., 2, 1931, 259-288, Zbl 0003.23502, 10.1093/qmath/os-2.1.259
Reference: [24] Fox, C.: An introduction to the calculus of variations.1963, Cambridge University Press, Reprinted by Dover (1987). MR 0919400
Reference: [25] Friedman, J. L., Louko, J., Winters-Hilt, S. N.: Reduced phase space formalism for spherically symmetric geometry with a massive dust shell.Phys. Rev. D, 56, 1997, 7674-7691, MR 1603603, 10.1103/PhysRevD.56.7674
Reference: [26] García, P. L.: The Poincaré-Cartan invariant in the calculus of variations.Symposia Mathematica, 14, 1974, 219-246, Zbl 0303.53040, MR 0406246
Reference: [27] Garrett, B. C., Abusalbi, N., Kouri, D. J., Truhlar, D. G.: Test of variational transition state theory and the least action approximation for multidimensional tunneling probabilities against accurate quantal rate constants for a collinear reaction involving tunneling into an excited state.J. Chem. Phys., 83, 1985, 2252-2258, 10.1063/1.449318
Reference: [28] Gelfand, I. M., Fomin, S. V.: Calculus of variations.2000, Dover, Zbl 0964.49001
Reference: [29] Giachetta, G., Mangiarotti, L., Sardanashvily, G.: Advanced classical field theory.2009, World Scientific, Zbl 1179.81002, MR 2527556
Reference: [30] Giaquinta, M., Hildebrandt, S.: Calculus of variations I: The Lagrangian formalism.1996, Springer Verlag, MR 1368401
Reference: [31] Goenner, H., Havas, P.: Exact solutions of the generalized Lane--Emden equation.J. Math. Phys., 41, 10, 2000, 7029-7043, Zbl 1009.34002, MR 1781422, 10.1063/1.1308076
Reference: [32] Goldschmidt, H., Sternberg, S.: The Hamilton-Cartan formalism in the calculus of variations.Ann. Inst. Fourier (Grenoble), 23, 1973, 203-267, Zbl 0243.49011, MR 0341531, 10.5802/aif.451
Reference: [33] Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd. ed..2001, Addison-Wesley, MR 0043608
Reference: [34] González, G.: Relativistic motion with linear dissipation.Int. J. Theor. Phys., 46, 3, 2007, 417-423, Zbl 1115.83002, MR 2304940, 10.1007/s10773-005-9003-1
Reference: [35] Gray, C. G., Karl, G., Novikov, V. A.: Progress in classical and quantum variational principles.Rep. Prog. Phys., 67, 2004, 159-208, MR 2033823, 10.1088/0034-4885/67/2/R02
Reference: [36] Gray, C. G., Poisson, E.: When action is not least for orbits in general relativity.Am. J. Phys., 79, 1, 2011, 43-56, 10.1119/1.3488986
Reference: [37] Gray, C. G., Taylor, E. F.: When action is not least.Am. J. Phys., 75, 5, 2007, 434-458, 10.1119/1.2710480
Reference: [38] Hamber, H. W., Williams, R. M.: Discrete gravity in one dimension.Nuclear Physics B, 451, 1995, 305-324, Zbl 0925.83004, MR 1352417, 10.1016/0550-3213(95)00358-Y
Reference: [39] Hand, L. N., Finch, J. D.: Analytical Mechanics.1998, Cambridge University Press,
Reference: [40] Harremoës, P., Topsøe, F.: Maximum Entropy Fundamentals.Entropy, 3, 2001, 191-226, MR 1885052, 10.3390/e3030191
Reference: [41] Hermes, H., Lasalle, J. P.: Functional analysis and time optimal control.1969, Academic Press, Zbl 0203.47504, MR 0420366
Reference: [42] Horedt, G. P.: Polytropes: Applications in astrophysics and related fields.2004, Kluwer,
Reference: [43] Jaynes, E. T.: Information theory and statistical mechanics.Phys. Rev., 106, 1957, 620-630, Zbl 0084.43701, MR 0087305, 10.1103/PhysRev.106.620
Reference: [44] José, J. V., Saletan, E. J.: Classical Dynamics, a contemporary approach.1998, Cambridge University Press, Zbl 0918.70001, MR 1640663
Reference: [45] Kapustnikov, A. A., Pashnev, A., Pichugin, A.: The canonical quantization of the kink--model beyond the static solution.Phys. Rev. D, 55, 1997, 2257-2264, 10.1103/PhysRevD.55.2257
Reference: [46] Klein, J. F.: Physical significance of entropy or of the second law.2009, Cornell University Library,
Reference: [47] Krupková, O.: The geometry of ordinary variational equations, Lecture Notes in Mathematics 1678.Springer Verlag, 1997, MR 1484970
Reference: [48] Krupková, O., (eds.), D. J. Saunders: Variations, geometry and physics.2009, Nova Science Publishers, Zbl 1209.58002, MR 2490562
Reference: [49] Lane, I. J. H.: On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestial experiment.Amer. J. Sci. and Arts, 4, 1870, 57-74,
Reference: [50] Lebedev, L. P., Cloud, M. J.: The calculus of variations and functional analysis (with optimal control and applications in mechanics).2003, World Scientific, Zbl 1042.49001, MR 2036504
Reference: [51] Lucha, W., Schöberl, F. F.: Relativistic Coulomb Problem: Energy Levels at the Critical Coupling Constant Analytically.Phys. Lett. B, 387, 1996, 573-576, 10.1016/0370-2693(96)01057-X
Reference: [52] Martyushev, L. M., Seleznev, V. D.: Maximum entropy production principle in physics, chemistry and biology.Physics Reports, 426, 2006, 1-45, MR 2202942, 10.1016/j.physrep.2005.12.001
Reference: [53] Menotti, P.: Hamiltonian structure of 2+1 dimensional gravity.Recent developments in general relativity, 14th SIGRAV Conference on General Relativity and Gravitational Physics, Genova, Italy (2000), 2002, 165-177, Springer, Zbl 1202.83095, MR 2016032
Reference: [54] Moore, T. A.: Getting the Most Action from the Least Action: A proposal.Am. J. Phys., 72, 4, 2004, 522-527, 10.1119/1.1646133
Reference: [55] Nersesyan, A. P.: Hamiltonian formalism for particles with a generalized rigidity.Theor. Math. Phys., 117, 1, 1998, 1214-1222, Zbl 1086.37523, MR 1698528, 10.1007/BF02557162
Reference: [56] Pars, L. A.: An introduction to the calculus of variations.1962, Heinemann, Reprinted by Dover (2010).. Zbl 0108.10303, MR 0147932
Reference: [57] Puzio, R.: On the square root of the Laplace--Beltrami operator as a Hamiltonian.Class. Quantum Grav., 11, 1994, 609-620, Zbl 0812.32009, MR 1265382, 10.1088/0264-9381/11/3/013
Reference: [58] Rajaraman, R.: Solitons and Instantons.1988, North--Holland Publishing, MR 0719693
Reference: [59] Ramond, P.: Field theory: A modern primer (Frontiers in Physics series Vol. 74).2001, Westview Press,
Reference: [60] Razavy, M.: Classical And Quantum Dissipative Systems.2006, Imperial College Press, MR 2218674
Reference: [61] Rojas, E.: Higher order curvature terms in Born-Infeld type brane theories.Int. J. Mod. Phys. D, 20, 2011, 59-75, Zbl 1213.83122, MR 2771386, 10.1142/S0218271811018615
Reference: [62] Saunders, D. J.: An alternative approach to the Cartan form in Lagrangian field theories.J. Phys. A, 20, 1987, 339-349, Zbl 0652.58002, MR 0874255, 10.1088/0305-4470/20/2/019
Reference: [63] Sagan, H.: Introduction to the calculus of variations.1992, Dover, MR 1210325
Reference: [64] Simmons, G. F., Krantz, S. G.: Differential Equations: Theory, Technique, and Practice.2006, McGraw-Hill,
Reference: [65] Smith, D.: Variational methods in optimization.1998, Dover, Zbl 0918.49001
Reference: [66] Stephani, H., Kramer, D., MacCallum, M. A. H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein's Field Equations.2003, Cambridge University Press, Zbl 1057.83004, MR 2003646
Reference: [67] Stirzaker, D.: Elementary probability.2003, Cambridge University Press, Zbl 1071.60002, MR 1998578
Reference: [68] Sussmann, H. J., Willems, J. C.: $300$ years of optimal control: from the brachystochrone problem to the maximum principle.IEEE Control Systems, 17, 1997, 32-44, 10.1109/37.588098
Reference: [69] Taylor, E. F.: Guest Editorial: A Call to Action.Am. J. Phys., 71, 5, 2003, 423-425, 10.1119/1.1555874
Reference: [70] Taylor, J. R.: Classical mechanics.2005, University Science Books, Zbl 1075.70002
Reference: [71] Thornton, S. T., Marion, J. B.: Classical Dynamics of Particles and Systems.2004, Brooks/Cole,
Reference: [72] Troutman, J. L.: Variational Calculus and Optimal Control: Optimization With Elementary Convexity.1996, Springer Verlag, Zbl 0865.49001, MR 1363262
Reference: [73] Brunt, B. Van: The calculus of variations.2004, Springer Verlag, MR 2004181
Reference: [74] Wang, Q. A.: Maximum entropy change and least action principle for non equilibrium systems.Astrophysics and Space Sciences, 305, 2006, 273-281, 10.1007/s10509-006-9202-0
Reference: [75] Whittaker, E. T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th. ed.1937, Dover, MR 0010813
Reference: [76] Williams, R. M.: Recent Progress in Regge Calculus.Nucl. Phys. Proc. Suppl., 57, 1997, 73-81, Zbl 0976.83506, MR 1480185, 10.1016/S0920-5632(97)00355-1
Reference: [77] Wong, J. S. W.: On the generalized Emden-Fowler equation.SIAM Rev., 17, 2, 1975, 339-360, Zbl 0295.34026, MR 0367368, 10.1137/1017036
Reference: [78] Zaslavski, A. J.: Turnpike properties in the calculus of variations and optimal control.2006, Springer Verlag, Zbl 1100.49003, MR 2164615
Reference: [79] Zeidler, E.: Nonlinear functional analysis and its applications, Vol. III: Variational methods and optimization.1986, Springer Verlag,
Reference: [80] Zloshchastiev, K. G.: Quantum kink model and $SU(2)$ symmetry: Spin interpretation and T-violation.J. Phys. A: Math. Gen., 31, 1998, 6081-6085, Zbl 0954.81046, 10.1088/0305-4470/31/28/021
Reference: [81] Zwiebach, B.: A First Course in String Theory.2004, Cambridge University Press, Zbl 1072.81001, MR 2069234
.

Files

Files Size Format View
ActaOstrav_20-2012-2_4.pdf 595.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo