Previous |  Up |  Next

Article

Title: On the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma =y^n$ (English)
Author: Godinho, Hemar
Author: Marques, Diego
Author: Togbé, Alain
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 20
Issue: 2
Year: 2012
Pages: 81-88
Summary lang: English
.
Category: math
.
Summary: In this paper, we find all solutions of the Diophantine equation $x^2+2^\alpha 5^\beta 17^\gamma = y^n$ in positive integers $x,y\geq 1$, $\alpha ,\beta ,\gamma ,n\geq 3$ with $\gcd (x,y)=1$. (English)
Keyword: Diophantine equation
Keyword: exponential equation
Keyword: primitive divisor theorem
MSC: 11D61
MSC: 11Y50
idZBL: Zbl 06165037
idMR: MR3032806
.
Date available: 2013-01-28T10:25:33Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/143141
.
Reference: [1] Muriefah, F. S. Abu: On the Diophantine equation $x^2+5^{2k}=y^n$.Demonstratio Math., 39, 2006, 285-289, MR 2245727
Reference: [2] Muriefah, F. S. Abu, Arif, S. A.: The Diophantine equation $x^2+5^{2k+1}=y^n$.Indian J. Pure Appl. Math., 30, 1999, 229-231, MR 1686079
Reference: [3] Muriefah, F. S. Abu, Luca, F., Togbé, A.: On the Diophantine equation $x^2+5^a\cdot 13^b=y^n$.Glasgow Math. J., 50, 2006, 175-181,
Reference: [4] Arif, S. A., Abu Muriefah, F. S.: On a Diophantine equation.Bull. Austral. Math. Soc., 57, 1998, 189-198, Zbl 0905.11018, MR 1617359, 10.1017/S0004972700031580
Reference: [5] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+2^k=y^n$.Int. J. Math. Math. Sci., 20, 1997, 299-304, MR 1444731, 10.1155/S0161171297000409
Reference: [6] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+3^m=y^n$.Int. J. Math. Math. Sci., 21, 1998, 619-620, MR 1620327, 10.1155/S0161171298000866
Reference: [7] Arif, S. A., Abu Muriefah, F. S.: On the Diophantine equation $x^2+q^{2k+1}=y^n$.J. Number Theory, 95, 2002, 95-100, Zbl 1037.11021, MR 1916082, 10.1006/jnth.2001.2750
Reference: [8] Bérczes, A., Brindza, B., Hajdu, L.: On power values of polynomials.Publ. Math. Debrecen, 53, 1998, 375-381, MR 1657483
Reference: [9] Bérczes, A., Pink, I.: On the diophantine equation $x^2 + p^{2k} = y^n$.Archiv der Mathematik, 91, 2008, 505-517, Zbl 1175.11018, MR 2465869
Reference: [10] Bérczes, A., Pink, I.: On the diophantine equation $x^2 + p^{2l+1} = y^n$.Glasgow Math. Journal, 54, 2012, 415-428, MR 2911379
Reference: [11] Bilu, Yu., Hanrot, G., Voutier, P.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte).J. Reine Angew. Math., 539, 2001, 75-122, Zbl 0995.11010, MR 1863855
Reference: [12] Bugeaud, Y., Muriefah, F. S. Abu: The Diophantine equation $x^2 + c = y^n$: a brief overview.Revista Colombiana de Matematicas, 40, 2006, 31-37, MR 2286850
Reference: [13] Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell Equation..Compositio Math., 142, 2006, 31-62, Zbl 1128.11013, MR 2196761, 10.1112/S0010437X05001739
Reference: [14] Cangül, I. N., Demirci, M., Inam, I., Luca, F., Soydan, G.: On the Diophantine equation $x^2 + 2^a\cdot 3^b\cdot 11^c = y^n$.Accepted to appear in Math. Slovaca.
Reference: [15] Cangü, I. N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2 + 2^a\cdot 11^b = y^n$.Fibonacci Quart., 48, 2010, 39-46, MR 2663418
Reference: [16] Cangül, I. N., Demirci, M., Soydan, G., Tzanakis, N.: The Diophantine equation $x^2+5^a\cdot 11^b=y^n$.Funct. Approx. Comment. Math, 43, 2010, 209-225, Zbl 1237.11019, MR 2767170
Reference: [17] Cannon, J., Playoust, C.: MAGMA: a new computer algebra system.Euromath Bull., 2, 1, 1996, 113-144, MR 1413180
Reference: [18] Goins, E., Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 2^{\alpha }5^{\beta }13^{\gamma } = y^n$.Algorithmic number theory, Lecture Notes in Computer Science, 5011/2008, 2008, 430-442, Zbl 1232.11130, MR 2467863
Reference: [19] Ko, C.: On the Diophantine equation $x^2=y^n+1$, $xy\not =0$.Sci. Sinica, 14, 1965, 457-460, MR 0183684
Reference: [20] Le, M.: An exponential Diophantine equation.Bull. Austral. Math. Soc., 64, 2001, 99-105, Zbl 0981.11013, MR 1848082, 10.1017/S0004972700019717
Reference: [21] Le, M.: On Cohn's conjecture concerning the Diophantine $x^2+2^m=y^n$.Arch. Math. (Basel), 78, 2002, 26-35, MR 1887313
Reference: [22] Le, M., Zhu, H.: On some generalized Lebesgue-Nagell equations.Journal of Number Theory, 131/3, 2011, 458-469, Zbl 1219.11059, MR 2739046, 10.1016/j.jnt.2010.09.009
Reference: [23] Lebesgue, V. A.: Sur l'impossibilité en nombres entiers de l'equation $x^m=y^2+1$.Nouv. Annal. des Math., 9, 1850, 178-181,
Reference: [24] Luca, F.: On a Diophantine equation.Bull. Austral. Math. Soc., 61, 2000, 241-246, Zbl 0997.11027, MR 1748703, 10.1017/S0004972700022231
Reference: [25] Luca, F.: On the Diophantine equation $x^2+2^a\cdot 3^b=y^n$.Int. J. Math. Math. Sci., 29, 2002, 239-244,
Reference: [26] Luca, F., Togbé, A.: On the Diophantine equation $x^2+2^a\cdot 5^b=y^n$.Int. J. Number Theory, 4, 2008, 973-979, Zbl 1231.11041, MR 2483306
Reference: [27] Luca, F., Togbé, A.: On the Diophantine equation $x^2 + 7^{2k} = y^n$.Fibonacci Quart., 54, 4, 2007, 322-326, Zbl 1221.11091, MR 2478616
Reference: [28] Pink, I., Rábai, Zs.: On the Diophantine equation $x^2 + 5^{k}17^l = y^n$.Commun. Math., 19, 2011, 1-9, MR 2855388
Reference: [29] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations.Indag. Math. (N.S.), 17/1, 2006, 103-114, Zbl 1110.11012, MR 2337167, 10.1016/S0019-3577(06)80009-1
Reference: [30] Saradha, N., Srinivasan, A.: Solutions of some generalized Ramanujan-Nagell equations via binary quadratic forms.Publ. Math. Debrecen, 71/3-4, 2007, 349-374, Zbl 1164.11020, MR 2361718
Reference: [31] Schinzel, A., Tijdeman, R.: On the equation $y^m = P(x)$.Acta Arith., 31, 1976, 199-204, MR 0422150
Reference: [32] Shorey, T. N., Tijdeman, R.: Exponential Diophantine equations, Cambridge Tracts in Mathematics.1986, 87. Cambridge University Press, Cambridge, x+240 pp.. MR 0891406
Reference: [33] Tengely, Sz.: On the Diophantine equation $x^2+a^2=2y^p$.Indag. Math. (N.S.), 15, 2004, 291-304, MR 2071862
.

Files

Files Size Format View
ActaOstrav_20-2012-2_3.pdf 517.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo