Previous |  Up |  Next

Article

Title: A smoothing Newton method for the second-order cone complementarity problem (English)
Author: Tang, Jingyong
Author: He, Guoping
Author: Dong, Li
Author: Fang, Liang
Author: Zhou, Jinchuan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 58
Issue: 2
Year: 2013
Pages: 223-247
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising. (English)
Keyword: second-order cone complementarity problem
Keyword: smoothing function
Keyword: smoothing Newton method
Keyword: global convergence
Keyword: quadratic convergence
MSC: 90C25
MSC: 90C30
MSC: 90C33
MSC: 90C53
idZBL: Zbl 1274.90268
idMR: MR3034823
DOI: 10.1007/s10492-013-0011-9
.
Date available: 2013-03-01T15:57:22Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/143164
.
Reference: [1] Burke, J., Xu, S.: A non-interior predictor-corrector path-following algorithm for LCP.Reformulation: Nonsmooth, Piecewise Smooth and Smoothing Methods M. Fukushima, L. Qi Kluwer Academic Publishers Boston (1999), 45-63. MR 1682736
Reference: [2] Burke, J., Xu, S.: A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem.Math. Program. 87 (2000), 113-130. Zbl 1081.90603, MR 1734661, 10.1007/s101079900111
Reference: [3] Chen, B., Chen, X.: A global and local superlinear continuation-smoothing method for $P_0+R_0$ and monotone NCP.SIAM J. Optim. 9 (1999), 624-645. MR 1681055, 10.1137/S1052623497321109
Reference: [4] Chen, B., Chen, X.: A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints.Comput. Optim. Appl. 17 (2000), 131-158. Zbl 0987.90079, MR 1806250, 10.1023/A:1026546230851
Reference: [5] Chen, B., Xiu, N.: A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions.SIAM J. Optim. 9 (1999), 605-623. Zbl 1037.90052, MR 1681059, 10.1137/S1052623497316191
Reference: [6] Chen, J.: A new merit function and its related properties for the second-order cone complementarity problem.Pac. J. Optim. 2 (2006), 167-179. Zbl 1178.90324, MR 2548216
Reference: [7] Chen, J., Chen, X., Tseng, P.: Analysis of nonsmooth vector-valued functions associated with second-order cones.Math. Program. 101 (2004), 95-117. Zbl 1065.49013, MR 2085260, 10.1007/s10107-004-0538-3
Reference: [8] Chen, J., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem.Math. Program. 104 (2005), 293-327. Zbl 1093.90063, MR 2179239, 10.1007/s10107-005-0617-0
Reference: [9] Chen, X. D., Sun, D., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems.Comput. Optim. Appl. 25 (2003), 39-56. Zbl 1038.90084, MR 1996662, 10.1023/A:1022996819381
Reference: [10] Chi, X. N., Liu, S. Y.: Analysis of a non-interior continuation method for second-order cone programming.J. Appl. Math. Comput. 27 (2008), 47-61. Zbl 1193.90169, MR 2403140, 10.1007/s12190-008-0057-0
Reference: [11] Chi, X. N., Liu, S. Y.: A one-step smoothing Newton method for second-order cone programming.J. Comput. Appl. Math. 223 (2009), 114-123. Zbl 1155.65045, MR 2463105, 10.1016/j.cam.2007.12.023
Reference: [12] Chi, X. N., Liu, S. Y.: A non-interior continuation method for second-order cone programming.Optimization 58 (2009), 965-979. Zbl 1177.90318, MR 2572781, 10.1080/02331930701763421
Reference: [13] Clarke, F. H.: Optimization and Nonsmooth Analysis.John Wiley & Sons New York (1983), reprinted by SIAM, Philadelphia, 1990. Zbl 0582.49001, MR 0709590
Reference: [14] Fang, L.: A new one-step smoothing Newton method for nonlinear complementarity problem with $P_0$-function.Appl. Math. Comput. 216 (2010), 1087-1095. Zbl 1239.65034, MR 2607218, 10.1016/j.amc.2010.02.001
Reference: [15] Fang, L., He, G. P., Hu, Y. H.: A new smoothing Newton-type method for second-order cone programming problems.Appl. Math. Comput. 215 (2009), 1020-1029. Zbl 1183.65065, MR 2568957, 10.1016/j.amc.2009.06.029
Reference: [16] Fukushima, M., Luo, Z., Tseng, P.: Smoothing functions for second-order-cone complementarity problems.SIAM J. Optim. 12 (2002), 436-460. MR 1885570, 10.1137/S1052623400380365
Reference: [17] Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularized method for monotone second-order cone complementarity problems.SIAM J. Optimization 15 (2005), 593-615. MR 2144183, 10.1137/S1052623403421516
Reference: [18] Huang, Z. H., Han, J. Y., Xu, D. C., Zhang, L. P.: The non-interior continuation methods for solving the $P_0$ function nonlinear complementarity problem.Sci. China, Ser. A 44 (2001), 1107-1114. Zbl 1002.90072, MR 1860828, 10.1007/BF02877427
Reference: [19] Huang, Z. H., Ni, T.: Smoothing algorithms for complementarity problems over symmetric cones.Comput. Optim. Appl. 45 (2010), 557-579. Zbl 1198.90373, MR 2600896, 10.1007/s10589-008-9180-y
Reference: [20] Ma, C., Chen, X.: The convergence of a one-step smoothing Newton method for $P_0$-NCP based on a new smoothing NCP-function.J. Comput. Appl. Math. 216 (2008), 1-13. Zbl 1140.65046, MR 2421836, 10.1016/j.cam.2007.03.031
Reference: [21] Mifflin, R.: Semismooth and semiconvex functions in constrained optimization.SIAM J. Control. Optim. 15 (1977), 957-972. Zbl 0376.90081, MR 0461556, 10.1137/0315061
Reference: [22] Pan, S. H., Chen, J. S.: A damped Gauss-Newton method for the second-order cone complementarity problem.Appl. Math. Optim. 59 (2009), 293-318. Zbl 1169.49031, MR 2491700, 10.1007/s00245-008-9054-9
Reference: [23] Pan, S. H., Chen, J. S.: A linearly convergent derivative-free descent method for the second-order cone complementarity problem.Optimization 59 (2010), 1173-1197. Zbl 1229.90239, MR 2738600, 10.1080/02331930903085359
Reference: [24] Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.Math. Oper. Res. 18 (1993), 227-244. Zbl 0776.65037, MR 1250115, 10.1287/moor.18.1.227
Reference: [25] Qi, L., Sun, J.: A nonsmooth version of Newton's method.Math. Program. 58 (1993), 353-367. Zbl 0780.90090, MR 1216791, 10.1007/BF01581275
Reference: [26] Qi, L., Sun, D.: Improving the convergence of non-interior point algorithm for nonlinear complementarity problems.Math. Comput. 69 (2000), 283-304. MR 1642766, 10.1090/S0025-5718-99-01082-0
Reference: [27] Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities.Math. Program. 87 (2000), 1-35. Zbl 0989.90124, MR 1734657, 10.1007/s101079900127
Reference: [28] Tang, J. Y., He, G. P., Dong, L., Fang, L.: A smoothing Newton method for second-order cone optimization based on a new smoothing function.Appl. Math. Comput. 218 (2011), 1317-1329. Zbl 1229.65101, MR 2831640, 10.1016/j.amc.2011.06.015
Reference: [29] Toh, K. C., Tütüncü, R. H., Todd, M. J.: SDPT3 Version 3.02-A MATLAB software for semidefinite-quadratic-linear programming, 2000.\hfill http://www.math.nus.edu.sg/ {mattohkc/sdpt3.html}..
Reference: [30] Yoshise, A.: Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones.SIAM J. Optim. 17 (2006), 1129-1153. Zbl 1136.90039, MR 2274506, 10.1137/04061427X
Reference: [31] Zhang, L., Han, J., Huang, Z.: Superlinear/quadratic one-step smoothing Newton method for $P_0$-NCP.Acta Math. Sin. 21 (2005), 117-128. Zbl 1124.90037, MR 2128829, 10.1007/s10114-004-0412-5
Reference: [32] Zhang, J., Zhang, K.: A variant smoothing Newton method for $P_0$-NCP based on a new smoothing function.J. Comput. Appl. Math. 225 (2009), 1-8. Zbl 1163.65043, MR 2490165, 10.1016/j.cam.2008.06.012
Reference: [33] Zhou, G., Sun, D., Qi, L.: Numerical experiments for a class of squared smoothing Newton methods for box constrained variational inequality problems.Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods M. Fukushima, L. Qi Kluwer Academic Publishers Boston (1999), 421-441. Zbl 0928.65080, MR 1682739
.

Files

Files Size Format View
AplMat_58-2013-2_6.pdf 346.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo